STT-tensorflow/tensorflow/python/ops/ragged/ragged_functional_ops.py
Edward Loper 77245d07d1 Add dispatch support to more Python APIs.
PiperOrigin-RevId: 311763060
Change-Id: Ib35371483aa083e245996508a82fd13d8ac43131
2020-05-15 11:03:18 -07:00

131 lines
5.2 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Support for ragged tensors."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops.ragged import ragged_config
from tensorflow.python.ops.ragged import ragged_tensor
from tensorflow.python.ops.ragged import ragged_util
from tensorflow.python.util import dispatch
from tensorflow.python.util.tf_export import tf_export
@tf_export("ragged.map_flat_values")
@dispatch.add_dispatch_support
def map_flat_values(op, *args, **kwargs):
"""Applies `op` to the values of one or more RaggedTensors.
Replaces any `RaggedTensor` in `args` or `kwargs` with its `flat_values`
tensor, and then calls `op`. Returns a `RaggedTensor` that is constructed
from the input `RaggedTensor`s' `nested_row_splits` and the value returned by
the `op`.
If the input arguments contain multiple `RaggedTensor`s, then they must have
identical `nested_row_splits`.
Examples:
>>> rt = tf.ragged.constant([[1, 2, 3], [], [4, 5], [6]])
>>> map_flat_values(tf.ones_like, rt).to_list()
[[1, 1, 1], [], [1, 1], [1]]
>>> map_flat_values(tf.multiply, rt, rt).to_list()
[[1, 4, 9], [], [16, 25], [36]]
>>> map_flat_values(tf.add, rt, 5).to_list()
[[6, 7, 8], [], [9, 10], [11]]
Args:
op: The operation that should be applied to the RaggedTensor `flat_values`.
`op` is typically an element-wise operation (such as math_ops.add), but
any operation that preserves the size of the outermost dimension can be
used. I.e., `shape[0]` of the value returned by `op` must match
`shape[0]` of the `RaggedTensor`s' `flat_values` tensors.
*args: Arguments for `op`.
**kwargs: Keyword arguments for `op`.
Returns:
A `RaggedTensor` whose `ragged_rank` matches the `ragged_rank` of all
input `RaggedTensor`s.
Raises:
ValueError: If args contains no `RaggedTensors`, or if the `nested_splits`
of the input `RaggedTensor`s are not identical.
"""
# Replace RaggedTensors with their values; and collect the splits tensors
# from each RaggedTensor.
nested_splits_lists = []
inner_args = _replace_ragged_with_flat_values(args, nested_splits_lists)
inner_kwargs = _replace_ragged_with_flat_values(kwargs, nested_splits_lists)
if not nested_splits_lists:
return op(*args, **kwargs)
split_dtypes = set(splits[0].dtype for splits in nested_splits_lists)
if len(split_dtypes) > 1:
if not ragged_config.auto_cast_partition_dtype():
raise ValueError("Input RaggedTensors have mismatched row_splits dtypes; "
"use RaggedTensor.with_row_splits_dtype() to convert "
"them to compatible dtypes.")
nested_splits_lists = [
[math_ops.cast(s, dtypes.int64) for s in nested_splits] # pylint: disable=g-complex-comprehension
for nested_splits in nested_splits_lists]
with ops.control_dependencies(
ragged_util.assert_splits_match(nested_splits_lists)):
# Delegate to op, and then compose the result from the transformed values
# and the splits.
return ragged_tensor.RaggedTensor.from_nested_row_splits(
op(*inner_args, **inner_kwargs), nested_splits_lists[0], validate=False)
def _replace_ragged_with_flat_values(value, nested_splits_lists):
"""Replace RaggedTensors with their flat_values, and record their splits.
Returns a copy of `value`, with any nested `RaggedTensor`s replaced by their
`flat_values` tensor. Looks inside lists, tuples, and dicts.
Appends each `RaggedTensor`'s `nested_splits` to `nested_splits_lists`.
Args:
value: The value that should be transformed by replacing `RaggedTensors`.
nested_splits_lists: An output parameter used to record the `nested_splits`
for any `RaggedTensors` that were replaced.
Returns:
A copy of `value` with nested `RaggedTensors` replaced by their `values`.
"""
# Base case
if ragged_tensor.is_ragged(value):
value = ragged_tensor.convert_to_tensor_or_ragged_tensor(value)
nested_splits_lists.append(value.nested_row_splits)
return value.flat_values
# Recursion cases
def recurse(v):
return _replace_ragged_with_flat_values(v, nested_splits_lists)
if isinstance(value, list):
return [recurse(v) for v in value]
elif isinstance(value, tuple):
return tuple(recurse(v) for v in value)
elif isinstance(value, dict):
return dict((k, recurse(v)) for (k, v) in value.items())
else:
return value