STT-tensorflow/tensorflow/python/ops/numpy_ops/np_random.py
A. Unique TensorFlower 27c8448a54 tf.numpy: Add support for functions in np.random module.
Remove np.bfloat16 and add some more dtypes.

PiperOrigin-RevId: 317591184
Change-Id: Iea428ad85119233a66ba04a8c9e7e41908ce23bf
2020-06-21 22:02:36 -07:00

110 lines
3.2 KiB
Python

# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Random functions."""
# pylint: disable=g-direct-tensorflow-import
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as onp
from tensorflow.python.framework import random_seed
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops.numpy_ops import np_array_ops
from tensorflow.python.ops.numpy_ops import np_dtypes
from tensorflow.python.ops.numpy_ops import np_utils
# TODO(agarwal): deprecate this.
DEFAULT_RANDN_DTYPE = onp.float32
@np_utils.np_doc('random.seed')
def seed(s):
"""Sets the seed for the random number generator.
Uses `tf.set_random_seed`.
Args:
s: an integer.
"""
try:
s = int(s)
except TypeError:
# TODO(wangpeng): support this?
raise ValueError('np.seed currently only support integer arguments.')
random_seed.set_seed(s)
@np_utils.np_doc('random.randn')
def randn(*args):
"""Returns samples from a normal distribution.
Uses `tf.random_normal`.
Args:
*args: The shape of the output array.
Returns:
An ndarray with shape `args` and dtype `float64`.
"""
# TODO(wangpeng): Use new stateful RNG
if np_utils.isscalar(args):
args = (args,)
dtype = np_dtypes.default_float_type()
return np_utils.tensor_to_ndarray(random_ops.random_normal(args, dtype=dtype))
@np_utils.np_doc('random.uniform')
def uniform(low=0.0, high=1.0, size=None):
dtype = np_dtypes.default_float_type()
low = np_array_ops.asarray(low, dtype=dtype)
high = np_array_ops.asarray(high, dtype=dtype)
if size is None:
size = array_ops.broadcast_dynamic_shape(low.shape, high.shape)
return np_utils.tensor_to_ndarray(
random_ops.random_uniform(
shape=size, minval=low, maxval=high, dtype=dtype))
@np_utils.np_doc('random.random')
def random(size=None):
return uniform(0., 1., size)
@np_utils.np_doc('random.rand')
def rand(*size):
return uniform(0., 1., size)
@np_utils.np_doc('random.randint')
def randint(low, high=None, size=None, dtype=onp.int): # pylint: disable=missing-function-docstring
low = int(low)
if high is None:
high = low
low = 0
if size is None:
size = ()
elif isinstance(size, int):
size = (size,)
dtype = np_utils.result_type(dtype)
if dtype not in (onp.int32, onp.int64):
raise ValueError('Only np.int32 or np.int64 types are supported')
return np_utils.tensor_to_ndarray(
random_ops.random_uniform(
shape=size, minval=low, maxval=high, dtype=dtype))