STT-tensorflow/tensorflow/python/keras/saving/save_test.py
Scott Zhu 86e649bf6f Rollback the previous change of feature_column test.
PiperOrigin-RevId: 314933875
Change-Id: Ib83c967083a2a26e02e1b38ae6baa205204f4a97
2020-06-05 08:44:53 -07:00

280 lines
9.7 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for Keras model saving code."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
from absl.testing import parameterized
import numpy as np
from tensorflow.python import keras
from tensorflow.python.eager import context
from tensorflow.python.feature_column import feature_column_lib
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.framework import test_util
from tensorflow.python.keras import combinations
from tensorflow.python.keras import losses
from tensorflow.python.keras import testing_utils
from tensorflow.python.keras.engine import sequential
from tensorflow.python.keras.layers import core
from tensorflow.python.keras.saving import model_config
from tensorflow.python.keras.saving import save
from tensorflow.python.keras.utils import generic_utils
from tensorflow.python.ops import lookup_ops
from tensorflow.python.platform import test
from tensorflow.python.saved_model import loader_impl
if sys.version_info >= (3, 6):
import pathlib # pylint:disable=g-import-not-at-top
try:
import h5py # pylint:disable=g-import-not-at-top
except ImportError:
h5py = None
class TestSaveModel(test.TestCase, parameterized.TestCase):
def setUp(self):
super(TestSaveModel, self).setUp()
self.model = testing_utils.get_small_sequential_mlp(1, 2, 3)
self.subclassed_model = testing_utils.get_small_subclass_mlp(1, 2)
def assert_h5_format(self, path):
if h5py is not None:
self.assertTrue(h5py.is_hdf5(path),
'Model saved at path {} is not a valid hdf5 file.'
.format(path))
def assert_saved_model(self, path):
loader_impl.parse_saved_model(path)
@test_util.run_v2_only
def test_save_format_defaults(self):
path = os.path.join(self.get_temp_dir(), 'model_path')
save.save_model(self.model, path)
self.assert_saved_model(path)
@test_util.run_v2_only
def test_save_hdf5(self):
path = os.path.join(self.get_temp_dir(), 'model')
save.save_model(self.model, path, save_format='h5')
self.assert_h5_format(path)
with self.assertRaisesRegexp(
NotImplementedError,
'requires the model to be a Functional model or a Sequential model.'):
save.save_model(self.subclassed_model, path, save_format='h5')
@test_util.run_v2_only
def test_save_tf(self):
path = os.path.join(self.get_temp_dir(), 'model')
save.save_model(self.model, path, save_format='tf')
self.assert_saved_model(path)
with self.assertRaisesRegexp(ValueError, 'input shapes have not been set'):
save.save_model(self.subclassed_model, path, save_format='tf')
self.subclassed_model.predict(np.random.random((3, 5)))
save.save_model(self.subclassed_model, path, save_format='tf')
self.assert_saved_model(path)
@test_util.run_v2_only
def test_save_load_tf_string(self):
path = os.path.join(self.get_temp_dir(), 'model')
save.save_model(self.model, path, save_format='tf')
save.load_model(path)
@test_util.run_v2_only
def test_save_load_tf_pathlib(self):
if sys.version_info >= (3, 6):
path = pathlib.Path(self.get_temp_dir()) / 'model'
save.save_model(self.model, path, save_format='tf')
save.load_model(path)
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
def test_saving_with_dense_features(self):
cols = [
feature_column_lib.numeric_column('a'),
feature_column_lib.indicator_column(
feature_column_lib.categorical_column_with_vocabulary_list(
'b', ['one', 'two']))
]
input_layers = {
'a': keras.layers.Input(shape=(1,), name='a'),
'b': keras.layers.Input(shape=(1,), name='b', dtype='string')
}
fc_layer = feature_column_lib.DenseFeatures(cols)(input_layers)
output = keras.layers.Dense(10)(fc_layer)
model = keras.models.Model(input_layers, output)
model.compile(
loss=keras.losses.MSE,
optimizer='rmsprop',
metrics=[keras.metrics.categorical_accuracy])
config = model.to_json()
loaded_model = model_config.model_from_json(config)
inputs_a = np.arange(10).reshape(10, 1)
inputs_b = np.arange(10).reshape(10, 1).astype('str')
with self.cached_session():
# Initialize tables for V1 lookup.
if not context.executing_eagerly():
self.evaluate(lookup_ops.tables_initializer())
self.assertLen(loaded_model.predict({'a': inputs_a, 'b': inputs_b}), 10)
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
def test_saving_with_sequence_features(self):
cols = [
feature_column_lib.sequence_numeric_column('a'),
feature_column_lib.indicator_column(
feature_column_lib.sequence_categorical_column_with_vocabulary_list(
'b', ['one', 'two']))
]
input_layers = {
'a':
keras.layers.Input(shape=(None, 1), sparse=True, name='a'),
'b':
keras.layers.Input(
shape=(None, 1), sparse=True, name='b', dtype='string')
}
fc_layer, _ = feature_column_lib.SequenceFeatures(cols)(input_layers)
# TODO(tibell): Figure out the right dtype and apply masking.
# sequence_length_mask = array_ops.sequence_mask(sequence_length)
# x = keras.layers.GRU(32)(fc_layer, mask=sequence_length_mask)
x = keras.layers.GRU(32)(fc_layer)
output = keras.layers.Dense(10)(x)
model = keras.models.Model(input_layers, output)
model.compile(
loss=keras.losses.MSE,
optimizer='rmsprop',
metrics=[keras.metrics.categorical_accuracy])
config = model.to_json()
loaded_model = model_config.model_from_json(config)
batch_size = 10
timesteps = 1
values_a = np.arange(10, dtype=np.float32)
indices_a = np.zeros((10, 3), dtype=np.int64)
indices_a[:, 0] = np.arange(10)
inputs_a = sparse_tensor.SparseTensor(indices_a, values_a,
(batch_size, timesteps, 1))
values_b = np.zeros(10, dtype=np.str)
indices_b = np.zeros((10, 3), dtype=np.int64)
indices_b[:, 0] = np.arange(10)
inputs_b = sparse_tensor.SparseTensor(indices_b, values_b,
(batch_size, timesteps, 1))
with self.cached_session():
# Initialize tables for V1 lookup.
if not context.executing_eagerly():
self.evaluate(lookup_ops.tables_initializer())
self.assertLen(
loaded_model.predict({
'a': inputs_a,
'b': inputs_b
}, steps=1), batch_size)
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
def test_saving_h5_for_rnn_layers(self):
# See https://github.com/tensorflow/tensorflow/issues/35731 for details.
inputs = keras.Input([10, 91], name='train_input')
rnn_layers = [
keras.layers.LSTMCell(size, recurrent_dropout=0, name='rnn_cell%d' % i)
for i, size in enumerate([512, 512])
]
rnn_output = keras.layers.RNN(
rnn_layers, return_sequences=True, name='rnn_layer')(inputs)
pred_feat = keras.layers.Dense(91, name='prediction_features')(rnn_output)
pred = keras.layers.Softmax()(pred_feat)
model = keras.Model(inputs=[inputs], outputs=[pred, pred_feat])
path = os.path.join(self.get_temp_dir(), 'model_path.h5')
model.save(path)
# Make sure the variable name is unique.
self.assertNotEqual(rnn_layers[0].kernel.name,
rnn_layers[1].kernel.name)
self.assertIn('rnn_cell1', rnn_layers[1].kernel.name)
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
def test_saving_optimizer_weights(self):
class MyModel(keras.Model):
def __init__(self):
super(MyModel, self).__init__()
self.layer = keras.layers.Dense(1)
def call(self, x):
return self.layer(x)
path = os.path.join(self.get_temp_dir(), 'weights_path')
x, y = np.ones((10, 10)), np.ones((10, 1))
model = MyModel()
model.compile('rmsprop', loss='bce')
model.train_on_batch(x, y)
model.reset_metrics()
model.save_weights(path, save_format='tf')
batch_loss = model.train_on_batch(x, y)
new_model = MyModel()
new_model.compile('rmsprop', loss='bce')
new_model.train_on_batch(x, y)
new_model.reset_metrics()
new_model.load_weights(path)
new_batch_loss = new_model.train_on_batch(x, y)
self.assertAllClose(batch_loss, new_batch_loss)
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
def test_saving_model_with_custom_object(self):
with generic_utils.custom_object_scope():
@generic_utils.register_keras_serializable()
class CustomLoss(losses.MeanSquaredError):
pass
model = sequential.Sequential(
[core.Dense(units=1, input_shape=(1,))])
model.compile(optimizer='sgd', loss=CustomLoss())
model.fit(np.zeros([10, 1]), np.zeros([10, 1]))
temp_dir = self.get_temp_dir()
filepath = os.path.join(temp_dir, 'saving')
model.save(filepath)
# Make sure the model can be correctly load back.
_ = save.load_model(filepath, compile=True)
if __name__ == '__main__':
test.main()