STT-tensorflow/tensorflow/python/keras/applications/applications_test.py
Francois Chollet 0d7620c3bc Add EfficientNetB0 to B7 to Keras Applications.
Also add swish activation to keras.activations (used by EfficientNets).

PiperOrigin-RevId: 286614744
Change-Id: Ieba8b1f47735bdbb31c4efc84f45f763b9daa9a4
2019-12-20 11:47:56 -08:00

142 lines
5.1 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Integration tests for Keras applications."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
from tensorflow.python.keras import backend
from tensorflow.python.keras.applications import densenet
from tensorflow.python.keras.applications import efficientnet
from tensorflow.python.keras.applications import inception_resnet_v2
from tensorflow.python.keras.applications import inception_v3
from tensorflow.python.keras.applications import mobilenet
from tensorflow.python.keras.applications import mobilenet_v2
from tensorflow.python.keras.applications import nasnet
from tensorflow.python.keras.applications import resnet
from tensorflow.python.keras.applications import resnet_v2
from tensorflow.python.keras.applications import vgg16
from tensorflow.python.keras.applications import vgg19
from tensorflow.python.keras.applications import xception
from tensorflow.python.platform import test
MODEL_LIST_NO_NASNET = [
(resnet.ResNet50, 2048),
(resnet.ResNet101, 2048),
(resnet.ResNet152, 2048),
(resnet_v2.ResNet50V2, 2048),
(resnet_v2.ResNet101V2, 2048),
(resnet_v2.ResNet152V2, 2048),
(vgg16.VGG16, 512),
(vgg19.VGG19, 512),
(xception.Xception, 2048),
(inception_v3.InceptionV3, 2048),
(inception_resnet_v2.InceptionResNetV2, 1536),
(mobilenet.MobileNet, 1024),
(mobilenet_v2.MobileNetV2, 1280),
(densenet.DenseNet121, 1024),
(densenet.DenseNet169, 1664),
(densenet.DenseNet201, 1920),
(efficientnet.EfficientNetB0, 1280),
(efficientnet.EfficientNetB1, 1280),
(efficientnet.EfficientNetB2, 1408),
(efficientnet.EfficientNetB3, 1536),
(efficientnet.EfficientNetB4, 1792),
(efficientnet.EfficientNetB5, 2048),
(efficientnet.EfficientNetB6, 2304),
(efficientnet.EfficientNetB7, 2560),
]
NASNET_LIST = [
(nasnet.NASNetMobile, 1056),
(nasnet.NASNetLarge, 4032),
]
MODEL_LIST = MODEL_LIST_NO_NASNET + NASNET_LIST
class ApplicationsTest(test.TestCase, parameterized.TestCase):
def assertShapeEqual(self, shape1, shape2):
if len(shape1) != len(shape2):
raise AssertionError(
'Shapes are different rank: %s vs %s' % (shape1, shape2))
for v1, v2 in zip(shape1, shape2):
if v1 != v2:
raise AssertionError('Shapes differ: %s vs %s' % (shape1, shape2))
@parameterized.parameters(*MODEL_LIST)
def test_application_base(self, app, _):
# Can be instantiated with default arguments
model = app(weights=None)
# Can be serialized and deserialized
config = model.get_config()
reconstructed_model = model.__class__.from_config(config)
self.assertEqual(len(model.weights), len(reconstructed_model.weights))
backend.clear_session()
@parameterized.parameters(*MODEL_LIST)
def test_application_notop(self, app, last_dim):
if 'NASNet' in app.__name__:
only_check_last_dim = True
else:
only_check_last_dim = False
output_shape = _get_output_shape(
lambda: app(weights=None, include_top=False))
if only_check_last_dim:
self.assertEqual(output_shape[-1], last_dim)
else:
self.assertShapeEqual(output_shape, (None, None, None, last_dim))
backend.clear_session()
@parameterized.parameters(MODEL_LIST)
def test_application_pooling(self, app, last_dim):
output_shape = _get_output_shape(
lambda: app(weights=None, include_top=False, pooling='avg'))
self.assertShapeEqual(output_shape, (None, last_dim))
@parameterized.parameters(*MODEL_LIST_NO_NASNET)
def test_application_variable_input_channels(self, app, last_dim):
if backend.image_data_format() == 'channels_first':
input_shape = (1, None, None)
else:
input_shape = (None, None, 1)
output_shape = _get_output_shape(
lambda: app(weights=None, include_top=False, input_shape=input_shape))
self.assertShapeEqual(output_shape, (None, None, None, last_dim))
backend.clear_session()
if backend.image_data_format() == 'channels_first':
input_shape = (4, None, None)
else:
input_shape = (None, None, 4)
output_shape = _get_output_shape(
lambda: app(weights=None, include_top=False, input_shape=input_shape))
self.assertShapeEqual(output_shape, (None, None, None, last_dim))
backend.clear_session()
def _get_output_shape(model_fn):
model = model_fn()
return model.output_shape
if __name__ == '__main__':
test.main()