STT-tensorflow/tensorflow/python/data/experimental/ops/random_ops.py

61 lines
2.1 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Datasets for random number generators."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
from tensorflow.python import tf2
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.util import random_seed
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import tensor_spec
from tensorflow.python.ops import gen_experimental_dataset_ops
from tensorflow.python.util.tf_export import tf_export
@tf_export("data.experimental.RandomDataset", v1=[])
class RandomDatasetV2(dataset_ops.DatasetSource):
"""A `Dataset` of pseudorandom values."""
def __init__(self, seed=None):
"""A `Dataset` of pseudorandom values."""
self._seed, self._seed2 = random_seed.get_seed(seed)
variant_tensor = gen_experimental_dataset_ops.random_dataset(
seed=self._seed, seed2=self._seed2, **self._flat_structure)
super(RandomDatasetV2, self).__init__(variant_tensor)
@property
def element_spec(self):
return tensor_spec.TensorSpec([], dtypes.int64)
@tf_export(v1=["data.experimental.RandomDataset"])
class RandomDatasetV1(dataset_ops.DatasetV1Adapter):
"""A `Dataset` of pseudorandom values."""
@functools.wraps(RandomDatasetV2.__init__)
def __init__(self, seed=None):
wrapped = RandomDatasetV2(seed)
super(RandomDatasetV1, self).__init__(wrapped)
if tf2.enabled():
RandomDataset = RandomDatasetV2
else:
RandomDataset = RandomDatasetV1