Brian Atkinson 66c48046f1 Small adjustments on import spacing.
This is mostly the result of an internal cleanup and formatting pass.

PiperOrigin-RevId: 286318018
Change-Id: I8f9e2f7519070035da73f9f24d2fc90864abc51b
2019-12-18 20:32:12 -08:00

153 lines
5.5 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test utilities for tf.data benchmarking functionality."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import timeit
import numpy as np
from tensorflow.python.client import session
from tensorflow.python.data.experimental.ops import testing
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.eager import context
from tensorflow.python.platform import test
class MetaBenchmark(test.Benchmark):
"""Benchmark that compares various ways of running tf.data benchmarks."""
# Note that each of these benchmarks is a separate method so that we can
# run them independently and collect a performance profile.
def setup_fast_dataset(self):
self.num_reps = 15
self.iters = 100000
options = dataset_ops.Options()
options.experimental_optimization.apply_default_optimizations = False
return dataset_ops.Dataset.range(10000**2).with_options(options)
def benchmark_fast_dataset_with_only_cpp_iterations(self):
dataset = self.setup_fast_dataset()
self.run_benchmark_with_only_cpp_iterations(dataset)
def benchmark_fast_dataset_with_session_run(self):
dataset = self.setup_fast_dataset()
self.run_benchmark_with_session_run(dataset)
def benchmark_fast_dataset_with_session_callable(self):
dataset = self.setup_fast_dataset()
self.run_benchmark_with_session_run(dataset, make_callable=True)
def benchmark_fast_dataset_in_eager(self):
with context.eager_mode():
dataset = self.setup_fast_dataset()
self.run_benchmark_in_eager(dataset)
def setup_slow_dataset(self):
dataset = self.setup_fast_dataset()
self.iters = 1000
# sleep for 1e-3s per iteration
return dataset.apply(testing.sleep(1000))
def benchmark_slow_dataset_with_only_cpp_iterations(self):
dataset = self.setup_slow_dataset()
self.run_benchmark_with_only_cpp_iterations(dataset)
def benchmark_slow_dataset_with_session_run(self):
dataset = self.setup_slow_dataset()
self.run_benchmark_with_session_run(dataset)
def benchmark_slow_dataset_with_session_callable(self):
dataset = self.setup_slow_dataset()
self.run_benchmark_with_session_run(dataset, make_callable=True)
def benchmark_slow_dataset_in_eager(self):
with context.eager_mode():
dataset = self.setup_slow_dataset()
self.run_benchmark_in_eager(dataset)
def report(self, deltas):
# Each `delta` is the time taken for `self.iters` iterations. Divide by the
# number of iterations here to get per-element iteration time.
deltas = np.array(deltas) / self.iters
# Discard the first 5 results from "warming up" the session.
deltas = deltas[5:]
median = np.median(deltas)
mean = np.mean(deltas)
min_val = np.min(deltas)
max_val = np.max(deltas)
extras = {
"iters_per_second": 1 / median,
"median": median,
"mean": mean,
"min": min_val,
"max": max_val,
"num_reps": self.num_reps - 5,
}
self.report_benchmark(wall_time=median, iters=self.iters, extras=extras)
def run_benchmark_in_eager(self, dataset):
deltas = []
for _ in range(self.num_reps):
iterator = iter(dataset)
deltas.append(timeit.timeit(lambda: next(iterator), number=self.iters)) # pylint: disable=cell-var-from-loop
self.report(deltas)
def run_benchmark_with_session_run(self, dataset, make_callable=False):
iterator = dataset_ops.make_initializable_iterator(dataset)
next_element = iterator.get_next()
with session.Session() as sess:
deltas = []
for _ in range(self.num_reps):
if make_callable:
get_next_element = sess.make_callable(next_element)
else:
# Note: session.run(next_element.op) is more performant than
# session.run(next_element) because we avoid the cost of copying the
# tensor from C++ to python.
get_next_element = lambda: sess.run(next_element.op)
sess.run(iterator.initializer)
deltas.append(timeit.timeit(get_next_element, number=self.iters))
self.report(deltas)
def run_benchmark_with_only_cpp_iterations(self, dataset):
"""Benchmarks the dataset with the iterations performed in C++."""
# NOTE: We use `dataset.skip()` to perform the iterations in C++, avoiding
# the overhead of multiple `session.run()` calls. Note that this relies on
# the underlying implementation of `skip`: if it is optimized in the future,
# we will have to change this code.
dataset = dataset.skip(self.iters - 1)
iterator = dataset_ops.make_initializable_iterator(dataset)
next_element = iterator.get_next()
with session.Session() as sess:
deltas = []
for _ in range(self.num_reps):
sess.run(iterator.initializer)
deltas.append(
timeit.timeit(lambda: sess.run(next_element.op), number=1))
self.report(deltas)
if __name__ == "__main__":
test.main()