This is mostly the result of an internal cleanup and formatting pass. PiperOrigin-RevId: 286318018 Change-Id: I8f9e2f7519070035da73f9f24d2fc90864abc51b
153 lines
5.5 KiB
Python
153 lines
5.5 KiB
Python
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Test utilities for tf.data benchmarking functionality."""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import timeit
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.python.client import session
|
|
from tensorflow.python.data.experimental.ops import testing
|
|
from tensorflow.python.data.ops import dataset_ops
|
|
from tensorflow.python.eager import context
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
class MetaBenchmark(test.Benchmark):
|
|
"""Benchmark that compares various ways of running tf.data benchmarks."""
|
|
|
|
# Note that each of these benchmarks is a separate method so that we can
|
|
# run them independently and collect a performance profile.
|
|
|
|
def setup_fast_dataset(self):
|
|
self.num_reps = 15
|
|
self.iters = 100000
|
|
options = dataset_ops.Options()
|
|
options.experimental_optimization.apply_default_optimizations = False
|
|
return dataset_ops.Dataset.range(10000**2).with_options(options)
|
|
|
|
def benchmark_fast_dataset_with_only_cpp_iterations(self):
|
|
dataset = self.setup_fast_dataset()
|
|
self.run_benchmark_with_only_cpp_iterations(dataset)
|
|
|
|
def benchmark_fast_dataset_with_session_run(self):
|
|
dataset = self.setup_fast_dataset()
|
|
self.run_benchmark_with_session_run(dataset)
|
|
|
|
def benchmark_fast_dataset_with_session_callable(self):
|
|
dataset = self.setup_fast_dataset()
|
|
self.run_benchmark_with_session_run(dataset, make_callable=True)
|
|
|
|
def benchmark_fast_dataset_in_eager(self):
|
|
with context.eager_mode():
|
|
dataset = self.setup_fast_dataset()
|
|
self.run_benchmark_in_eager(dataset)
|
|
|
|
def setup_slow_dataset(self):
|
|
dataset = self.setup_fast_dataset()
|
|
self.iters = 1000
|
|
# sleep for 1e-3s per iteration
|
|
return dataset.apply(testing.sleep(1000))
|
|
|
|
def benchmark_slow_dataset_with_only_cpp_iterations(self):
|
|
dataset = self.setup_slow_dataset()
|
|
self.run_benchmark_with_only_cpp_iterations(dataset)
|
|
|
|
def benchmark_slow_dataset_with_session_run(self):
|
|
dataset = self.setup_slow_dataset()
|
|
self.run_benchmark_with_session_run(dataset)
|
|
|
|
def benchmark_slow_dataset_with_session_callable(self):
|
|
dataset = self.setup_slow_dataset()
|
|
self.run_benchmark_with_session_run(dataset, make_callable=True)
|
|
|
|
def benchmark_slow_dataset_in_eager(self):
|
|
with context.eager_mode():
|
|
dataset = self.setup_slow_dataset()
|
|
self.run_benchmark_in_eager(dataset)
|
|
|
|
def report(self, deltas):
|
|
# Each `delta` is the time taken for `self.iters` iterations. Divide by the
|
|
# number of iterations here to get per-element iteration time.
|
|
deltas = np.array(deltas) / self.iters
|
|
# Discard the first 5 results from "warming up" the session.
|
|
deltas = deltas[5:]
|
|
|
|
median = np.median(deltas)
|
|
mean = np.mean(deltas)
|
|
min_val = np.min(deltas)
|
|
max_val = np.max(deltas)
|
|
extras = {
|
|
"iters_per_second": 1 / median,
|
|
"median": median,
|
|
"mean": mean,
|
|
"min": min_val,
|
|
"max": max_val,
|
|
"num_reps": self.num_reps - 5,
|
|
}
|
|
self.report_benchmark(wall_time=median, iters=self.iters, extras=extras)
|
|
|
|
def run_benchmark_in_eager(self, dataset):
|
|
deltas = []
|
|
for _ in range(self.num_reps):
|
|
iterator = iter(dataset)
|
|
deltas.append(timeit.timeit(lambda: next(iterator), number=self.iters)) # pylint: disable=cell-var-from-loop
|
|
|
|
self.report(deltas)
|
|
|
|
def run_benchmark_with_session_run(self, dataset, make_callable=False):
|
|
iterator = dataset_ops.make_initializable_iterator(dataset)
|
|
next_element = iterator.get_next()
|
|
|
|
with session.Session() as sess:
|
|
deltas = []
|
|
for _ in range(self.num_reps):
|
|
if make_callable:
|
|
get_next_element = sess.make_callable(next_element)
|
|
else:
|
|
# Note: session.run(next_element.op) is more performant than
|
|
# session.run(next_element) because we avoid the cost of copying the
|
|
# tensor from C++ to python.
|
|
get_next_element = lambda: sess.run(next_element.op)
|
|
|
|
sess.run(iterator.initializer)
|
|
deltas.append(timeit.timeit(get_next_element, number=self.iters))
|
|
self.report(deltas)
|
|
|
|
def run_benchmark_with_only_cpp_iterations(self, dataset):
|
|
"""Benchmarks the dataset with the iterations performed in C++."""
|
|
# NOTE: We use `dataset.skip()` to perform the iterations in C++, avoiding
|
|
# the overhead of multiple `session.run()` calls. Note that this relies on
|
|
# the underlying implementation of `skip`: if it is optimized in the future,
|
|
# we will have to change this code.
|
|
dataset = dataset.skip(self.iters - 1)
|
|
iterator = dataset_ops.make_initializable_iterator(dataset)
|
|
next_element = iterator.get_next()
|
|
|
|
with session.Session() as sess:
|
|
deltas = []
|
|
for _ in range(self.num_reps):
|
|
sess.run(iterator.initializer)
|
|
deltas.append(
|
|
timeit.timeit(lambda: sess.run(next_element.op), number=1))
|
|
self.report(deltas)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|