STT-tensorflow/tensorflow/compiler/tf2xla/kernels/transpose_op.cc
Brian Zhao 556824565d Automated g4 rollback of changelist 304856650.
PiperOrigin-RevId: 305076580
Change-Id: I98886941dbfb25acd99d6ca2601eaee6dc657034
2020-04-06 11:29:58 -07:00

175 lines
6.6 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// XLA-specific Transpose Op. This is very different to the Eigen
// version in third_party/tensorflow because XLA's reshape neatly
// handles all transposes, while Eigen needs a restricted DoTranspose
// helper.
#include "tensorflow/compiler/tf2xla/lib/scatter.h"
#include "tensorflow/compiler/tf2xla/type_util.h"
#include "tensorflow/compiler/tf2xla/xla_helpers.h"
#include "tensorflow/compiler/tf2xla/xla_op_kernel.h"
#include "tensorflow/compiler/tf2xla/xla_op_registry.h"
#include "tensorflow/compiler/xla/client/xla_builder.h"
#include "tensorflow/core/framework/bounds_check.h"
#include "tensorflow/core/framework/kernel_def_builder.h"
#include "tensorflow/core/framework/register_types.h"
namespace tensorflow {
namespace {
class TransposeOp : public XlaOpKernel {
public:
explicit TransposeOp(OpKernelConstruction* ctx, bool conjugate = false)
: XlaOpKernel(ctx), conjugate_(conjugate) {}
void Compile(XlaOpKernelContext* ctx) override {
const TensorShape input_shape = ctx->InputShape("x");
const TensorShape perm_tensor_shape = ctx->InputShape("perm");
// Preliminary validation of sizes.
OP_REQUIRES(ctx, TensorShapeUtils::IsVector(perm_tensor_shape),
errors::InvalidArgument("perm must be a vector, not ",
perm_tensor_shape.DebugString()));
const int dims = input_shape.dims();
OP_REQUIRES(ctx, dims == perm_tensor_shape.num_elements(),
errors::InvalidArgument("transpose expects a vector of size ",
input_shape.dims(),
". But input(1) is a vector of size ",
perm_tensor_shape.num_elements()));
std::vector<int64> perm;
OP_REQUIRES_OK(ctx, ctx->ConstantInputAsIntVector("perm", &perm));
std::vector<int64> transposed_order;
// Check whether permutation is a permutation of integers of [0 .. dims).
absl::InlinedVector<bool, 8> bits(dims);
bool is_identity = true;
for (int i = 0; i < dims; ++i) {
const int64 d = perm[i];
OP_REQUIRES(
ctx, 0 <= d && d < dims,
errors::InvalidArgument(d, " is out of range [0 .. ", dims, ")"));
bits[d] = true;
transposed_order.push_back(d);
if (d != i) {
is_identity = false;
}
}
for (int i = 0; i < dims; ++i) {
OP_REQUIRES(
ctx, bits[i],
errors::InvalidArgument(i, " is missing from 'perm' argument."));
}
xla::XlaOp transposed;
// 0-D, 1-D, and identity transposes do nothing.
if (dims <= 1 || is_identity) {
transposed = ctx->Input("x");
} else {
transposed = xla::Transpose(ctx->Input("x"), transposed_order);
}
// Conjugate the transposed result if this is ConjugateTransposeOp.
if (conjugate_) {
ctx->SetOutput(0, xla::Conj(transposed));
} else {
ctx->SetOutput(0, transposed);
}
}
private:
const bool conjugate_;
};
class ConjugateTransposeOp : public TransposeOp {
public:
explicit ConjugateTransposeOp(OpKernelConstruction* ctx)
: TransposeOp(ctx, /*conjugate=*/true) {}
};
REGISTER_XLA_OP(Name("Transpose").CompileTimeConstantInput("perm"),
TransposeOp);
REGISTER_XLA_OP(Name("ConjugateTranspose").CompileTimeConstantInput("perm"),
ConjugateTransposeOp);
// InvertPermutation frequently forms part of the gradient of Transpose.
//
// inv = InvertPermutationOp(T<int32> p) takes a permutation of
// integers 0, 1, ..., n - 1 and returns the inverted
// permutation of p. I.e., inv[p[i]] == i, for i in [0 .. n).
//
// REQUIRES: input is a vector of int32.
// REQUIRES: input is a permutation of 0, 1, ..., n-1.
class InvertPermutationOp : public XlaOpKernel {
public:
explicit InvertPermutationOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {}
void Compile(XlaOpKernelContext* ctx) override {
OP_REQUIRES(ctx,
FastBoundsCheck(ctx->InputShape(0).num_elements(),
std::numeric_limits<int32>::max()),
errors::InvalidArgument("permutation of nonnegative int32s "
"must have <= int32 max elements"));
auto e = ctx->InputExpression(0);
auto tensor_or_status = e.ResolveConstant(ctx->compiler()->client());
OP_REQUIRES_OK(ctx, tensor_or_status.status());
// If the input is a constant, we also want the output to be a constant.
// Some models rely on the result of InvertPermutation being a constant.
// TODO(b/32495713): Remove this when we can check whether Scatter is
// constant. Right now, we always assume it is non-constant because we don't
// check the embedded computation.
if (tensor_or_status.ValueOrDie().has_value()) {
std::vector<int64> perm;
OP_REQUIRES_OK(ctx, ctx->ConstantInputAsIntVector(0, &perm));
int size = perm.size();
std::vector<int32> output(size);
std::fill_n(output.data(), size, -1);
for (int i = 0; i < size; ++i) {
const int64 d = perm[i];
OP_REQUIRES(ctx, FastBoundsCheck(d, size),
errors::InvalidArgument(d, " is not between 0 and ", size));
OP_REQUIRES(ctx, output[d] == -1,
errors::InvalidArgument(d, " is duplicated in the input."));
output[d] = i;
}
ctx->SetOutput(0, xla::ConstantR1<int32>(ctx->builder(), output));
} else {
auto indices = ctx->Input(0);
int size = ctx->InputShape(0).num_elements();
auto iota = xla::Iota(ctx->builder(), xla::S32, size);
auto result = XlaScatter(iota, iota, indices,
/*indices_are_vectors=*/false, /*combiner=*/{},
ctx->builder());
OP_REQUIRES_OK(ctx, result.status());
ctx->SetOutput(0, result.ValueOrDie());
}
}
};
REGISTER_XLA_OP(Name("InvertPermutation").TypeConstraint("T", DT_INT32),
InvertPermutationOp);
} // namespace
} // namespace tensorflow