STT-tensorflow/tensorflow/compiler/tf2xla/kernels/reshape_op.cc
Brian Zhao 556824565d Automated g4 rollback of changelist 304856650.
PiperOrigin-RevId: 305076580
Change-Id: I98886941dbfb25acd99d6ca2601eaee6dc657034
2020-04-06 11:29:58 -07:00

144 lines
5.5 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// XLA-specific reshape Op.
#include "tensorflow/compiler/tf2xla/type_util.h"
#include "tensorflow/compiler/tf2xla/xla_helpers.h"
#include "tensorflow/compiler/tf2xla/xla_op_kernel.h"
#include "tensorflow/compiler/tf2xla/xla_op_registry.h"
#include "tensorflow/compiler/xla/client/xla_builder.h"
#include "tensorflow/compiler/xla/literal.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
namespace tensorflow {
namespace {
class ReshapeOp : public XlaOpKernel {
public:
explicit ReshapeOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {}
void Compile(XlaOpKernelContext* ctx) override {
const TensorShape input_shape = ctx->InputShape(0);
const TensorShape sizes_shape = ctx->InputShape(1);
// Preliminary validation of sizes.
OP_REQUIRES(ctx, TensorShapeUtils::IsVector(sizes_shape),
errors::InvalidArgument("sizes input must be 1-D, not shape ",
sizes_shape.DebugString()));
const int64 num_dims = sizes_shape.num_elements();
std::vector<int64> shape_input;
OP_REQUIRES_OK(ctx, ctx->ConstantInputAsIntVector(1, &shape_input));
// Compute the output shape. Determine product of specified
// dimensions, and find the index of the unspecified one if there
// is one.
TensorShape shape;
int64 product = 1;
int unknown_index = -1;
bool shape_has_zero_dim = false;
for (int d = 0; d < num_dims; ++d) {
const int32 size = shape_input[d];
if (size == -1) {
OP_REQUIRES(
ctx, unknown_index == -1,
errors::InvalidArgument("only one input size may be -1, not both ",
unknown_index, " and ", d));
unknown_index = d;
shape.AddDim(1);
} else if (size == 0) {
// We don't include zero-sized dimension in product, so that we can
// still calculate number of elements for non-zero-sized dimensions and
// therefore infer their shapes.
shape.AddDim(size);
shape_has_zero_dim = true;
} else {
OP_REQUIRES(ctx, size >= 0,
errors::InvalidArgument(
"size ", d, " must be non-negative, not ", size));
shape.AddDim(size);
product *= size;
}
}
if (unknown_index != -1) {
int64 input_num_elements = 1;
bool input_has_zero_dim = false;
for (int dim = 0; dim < input_shape.dims(); dim++) {
// For zero dimension, we don't count it into `input_num_elements`
// unless `sizes` has no zero dimension, so we are still able to
// infer shapes for other dimensions.
if (input_shape.dim_size(dim) > 0 || !shape_has_zero_dim) {
input_num_elements *= input_shape.dim_size(dim);
} else {
input_has_zero_dim = true;
}
}
const int64 missing = input_num_elements / product;
if (!input_has_zero_dim) {
OP_REQUIRES(
ctx, product * missing == input_num_elements,
errors::InvalidArgument(
"Input to reshape is a tensor with ", input_num_elements,
" values, but the requested shape requires a multiple of ",
product));
}
shape.set_dim(unknown_index, missing);
}
OP_REQUIRES(ctx, shape.num_elements() == input_shape.num_elements(),
errors::InvalidArgument("Input to reshape is a tensor with ",
input_shape.num_elements(),
" values, but the requested shape has ",
shape.num_elements()));
VLOG(2) << "Reshape from " << input_shape.DebugString() << " to "
<< shape.DebugString() << ", unknown_index=" << unknown_index;
shape_input.clear();
// Run get input again, this time with dynamic dimension represented as
// "-1"
ctx->set_dynamic_dimension_is_minus_one(true);
OP_REQUIRES_OK(ctx, ctx->ConstantInputAsIntVector(1, &shape_input));
int dynamic_dimension = -1;
for (int d = 0; d < num_dims; ++d) {
const int32 size = shape_input[d];
if (size == -1) {
if (dynamic_dimension == -1) {
dynamic_dimension = d;
} else {
if (unknown_index != d) {
dynamic_dimension = d;
}
}
}
}
// Pass unknown_index to Xla::Reshape as a hint for dynamic shape inference
// in XLA to know which output dimension is dynamic.
ctx->SetOutput(0, xla::ReshapeWithInferredDimension(
ctx->Input(0), shape.dim_sizes(), dynamic_dimension));
}
};
REGISTER_XLA_OP(Name("Reshape").CompileTimeConstantInput("shape"), ReshapeOp);
} // namespace
} // namespace tensorflow