176 lines
6.3 KiB
C++
176 lines
6.3 KiB
C++
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#ifndef TENSORFLOW_CC_EXPERIMENTAL_BASE_PUBLIC_TENSOR_H_
|
|
#define TENSORFLOW_CC_EXPERIMENTAL_BASE_PUBLIC_TENSOR_H_
|
|
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include "tensorflow/c/tf_datatype.h"
|
|
#include "tensorflow/c/tf_tensor.h"
|
|
#include "tensorflow/cc/experimental/base/public/status.h"
|
|
|
|
namespace tensorflow {
|
|
namespace experimental {
|
|
namespace cc {
|
|
|
|
// Tensor represents an n-dimensional array of values.
|
|
class Tensor {
|
|
public:
|
|
using DeleterCallback = std::function<void(void*, size_t)>;
|
|
|
|
// Constructs a Tensor from user provided buffer.
|
|
//
|
|
// Params:
|
|
// dtype - The dtype of the tensor's data.
|
|
// shape - A shape vector, where each element corresponds to the size of
|
|
// the tensor's corresponding dimension.
|
|
// data - Pointer to a buffer of memory to construct a Tensor out of.
|
|
// len - The length (in bytes) of `data`
|
|
// deleter - A std::function to be called when the Tensor no longer needs the
|
|
// memory in `data`. This can be used to free `data`, or
|
|
// perhaps decrement a refcount associated with `data`, etc.
|
|
// status - Set to OK on success and an error on failure.
|
|
// Returns:
|
|
// If an error occurred, status->ok() will be false, and the returned
|
|
// Tensor must not be used.
|
|
// TODO(bmzhao): Add Runtime as an argument to this function so we can swap to
|
|
// a TFRT backed tensor.
|
|
// TODO(bmzhao): Add benchmarks on overhead for this function; we can
|
|
// consider using int64_t* + length rather than vector.
|
|
static Tensor FromBuffer(TF_DataType dtype, const std::vector<int64_t>& shape,
|
|
void* data, size_t len, DeleterCallback deleter,
|
|
Status* status);
|
|
|
|
// TODO(bmzhao): In the case we construct a tensor from non-owned memory,
|
|
// we should offer a way to deep copy the tensor into a new tensor, which
|
|
// owns the underlying memory. This could be a .deepcopy()/clone() method.
|
|
|
|
// TODO(bmzhao): In the future, we want to relax the non-copyability
|
|
// constraint. To do so, we can add a C API function that acts like
|
|
// CopyFrom:
|
|
// https://github.com/tensorflow/tensorflow/blob/08931c1e3e9eb2e26230502d678408e66730826c/tensorflow/core/framework/tensor.h#L301-L311
|
|
|
|
// Tensor is movable, but not copyable
|
|
Tensor(Tensor&&) = default;
|
|
Tensor& operator=(Tensor&&) = default;
|
|
|
|
// Returns the number of dimensions in the tensor. Can be -1, which represents
|
|
// unknown rank.
|
|
int dims() const;
|
|
|
|
// Returns the number of elements in in demension `d`.
|
|
// REQUIRES: `0 <= d < dims()`
|
|
int64_t dim_size(int d) const;
|
|
|
|
// Returns a pointer to the underlying data buffer.
|
|
void* data() const;
|
|
|
|
// Returns the data type of the tensor.
|
|
TF_DataType dtype() const;
|
|
|
|
// Returns the number of elements in the tensor. For a tensor with a partially
|
|
// defined shape, -1 means not fully defined.
|
|
int64_t num_elements() const;
|
|
|
|
// Returns the size of the underlying data in bytes.
|
|
size_t num_bytes() const;
|
|
|
|
private:
|
|
friend class TensorHandle;
|
|
friend class Runtime;
|
|
|
|
// Wraps a TF_Tensor. Takes ownership of handle.
|
|
explicit Tensor(TF_Tensor* tensor) : tensor_(tensor) {}
|
|
|
|
// Tensor is not copyable
|
|
Tensor(const Tensor&) = delete;
|
|
Tensor& operator=(const Tensor&) = delete;
|
|
|
|
// Returns the underlying TF_Tensor that this object wraps.
|
|
// This object retains ownership of the pointer.
|
|
TF_Tensor* GetTFTensor() const { return tensor_.get(); }
|
|
|
|
struct DeleterStruct {
|
|
std::function<void(void*, size_t)> deleter;
|
|
};
|
|
|
|
static void DeleterFunction(void* memory, size_t len, void* deleter_struct) {
|
|
DeleterStruct* deleter = reinterpret_cast<DeleterStruct*>(deleter_struct);
|
|
deleter->deleter(memory, len);
|
|
delete deleter;
|
|
}
|
|
|
|
struct TFTensorDeleter {
|
|
void operator()(TF_Tensor* p) const { TF_DeleteTensor(p); }
|
|
};
|
|
std::unique_ptr<TF_Tensor, TFTensorDeleter> tensor_;
|
|
};
|
|
|
|
inline void* Tensor::data() const { return TF_TensorData(tensor_.get()); }
|
|
|
|
inline int Tensor::dims() const { return TF_NumDims(tensor_.get()); }
|
|
|
|
inline int64_t Tensor::dim_size(int d) const {
|
|
return TF_Dim(tensor_.get(), d);
|
|
}
|
|
|
|
inline TF_DataType Tensor::dtype() const {
|
|
return TF_TensorType(tensor_.get());
|
|
}
|
|
|
|
inline int64_t Tensor::num_elements() const {
|
|
return TF_TensorElementCount(tensor_.get());
|
|
}
|
|
|
|
inline size_t Tensor::num_bytes() const {
|
|
return TF_TensorByteSize(tensor_.get());
|
|
}
|
|
|
|
inline Tensor Tensor::FromBuffer(TF_DataType dtype,
|
|
const std::vector<int64_t>& shape, void* data,
|
|
size_t len, DeleterCallback deleter,
|
|
Status* status) {
|
|
// Credit to apassos@ for this technique:
|
|
// Despite the fact that our API takes a std::function deleter, we are able
|
|
// to maintain ABI stability because:
|
|
// 1. Only a function pointer is sent across the C API (&DeleterFunction)
|
|
// 2. DeleterFunction is defined in the same build artifact that constructed
|
|
// the std::function (so there isn't confusion about std::function ABI).
|
|
// Note that 2. is satisifed by the fact that this is a header-only API, where
|
|
// the function implementations are inline.
|
|
|
|
DeleterStruct* deleter_struct = new DeleterStruct{deleter};
|
|
TF_Tensor* tensor = TF_NewTensor(dtype, shape.data(), shape.size(), data, len,
|
|
&DeleterFunction, deleter_struct);
|
|
if (tensor == nullptr) {
|
|
status->SetStatus(TF_INVALID_ARGUMENT,
|
|
"Failed to create tensor for input buffer");
|
|
return Tensor(nullptr);
|
|
}
|
|
return Tensor(tensor);
|
|
}
|
|
|
|
} // namespace cc
|
|
} // namespace experimental
|
|
} // namespace tensorflow
|
|
|
|
#endif // TENSORFLOW_CC_EXPERIMENTAL_BASE_PUBLIC_TENSOR_H_
|