STT-tensorflow/tensorflow/stream_executor/rocm/rocm_dnn.h
Kaixi Hou d779e8431a PR #37679: Support two CUDNN CTC Loss algorithms
Imported from GitHub PR https://github.com/tensorflow/tensorflow/pull/37679

This PR enables CUDNN CTC Loss to support both deterministic and non-deterministic algos.

If determinism is required, we will stick to deterministic algo.
Otherwise, the faster non-deterministic algo will be tried in cudnnGetCtcLossWorkspace(). If it fails, we fall-back to the deterministic algo.

fyi @nluehr @sanjoy
Copybara import of the project:

--
e338f0bad8a10c6b0e6284e609dfe2b6ebeab9f0 by Kaixi Hou <kaixih@nvidia.com>:

CTC loss support two algos

--
c90ebbd533202c791e342b5716c3410c4557ea1a by Kaixi Hou <kaixih@nvidia.com>:

Reuse macros of cudnn launch

--
c9fd60fa4abc37674923acb802e46a7ac8055796 by Kaixi Hou <kaixih@nvidia.com>:

Add unittest for ctc_loss fallback algo

--
e29100d0202e2a519845b818d6f9603505d2c83e by Kaixi Hou <kaixih@nvidia.com>:

Shorten the comment sentence

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/tensorflow/pull/37679 from houtoms:ctc_loss_workspace_check e29100d0202e2a519845b818d6f9603505d2c83e
PiperOrigin-RevId: 305942210
Change-Id: I57062bcb5f04097a3280eb6eeb5de51bae6ef3ca
2020-04-10 14:15:07 -07:00

857 lines
44 KiB
C++

/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// The ROCM-specific DNN library support, implementing the general DnnSupport
// interface.
#ifndef TENSORFLOW_STREAM_EXECUTOR_ROCM_ROCM_DNN_H_
#define TENSORFLOW_STREAM_EXECUTOR_ROCM_ROCM_DNN_H_
#include "absl/synchronization/mutex.h"
#include "tensorflow/core/platform/thread_annotations.h"
#include "tensorflow/stream_executor/dnn.h"
#include "tensorflow/stream_executor/lib/status.h"
#include "tensorflow/stream_executor/plugin_registry.h"
#include "tensorflow/stream_executor/temporary_device_memory.h"
namespace stream_executor {
namespace gpu {
class GpuExecutor;
class MIOpenRnnDescriptor;
class MIOpenRnnSequenceTensorDescriptor;
class MIOpenRnnStateTensorDescriptor;
class MIOpenCTCLossDescriptor;
// Opaque and unique identifier for the MIOpen plugin.
extern const PluginId kMIOpenPlugin;
// miopen-library based DNN support. For details on overridden interface
// functions, see dnn.h.
class MIOpenSupport : public dnn::DnnSupport {
public:
explicit MIOpenSupport(GpuExecutor* parent);
port::Status Init() override;
port::StatusOr<perftools::gputools::dnn::VersionInfo> GetVersion() override;
port::StatusOr<std::unique_ptr<dnn::RnnDescriptor>> createRnnDescriptor(
int num_layers, int hidden_size, int input_size, int cell_size,
int batch_size, dnn::RnnInputMode input_mode,
dnn::RnnDirectionMode direction_mode, dnn::RnnMode rnn_mode,
dnn::DataType data_type, const dnn::AlgorithmConfig& algorithm_config,
float dropout, uint64 seed, ScratchAllocator* state_allocator,
bool use_padded_io) override;
port::StatusOr<std::unique_ptr<dnn::RnnSequenceTensorDescriptor>>
createRnnSequenceTensorDescriptor(int seq_length, int batch_size,
int data_size,
dnn::DataType data_type) override;
port::StatusOr<std::unique_ptr<dnn::RnnStateTensorDescriptor>>
createRnnStateTensorDescriptor(int num_layer, int batch_size, int data_size,
dnn::DataType data_type) override;
bool DoRnnForward(Stream* stream, const dnn::RnnDescriptor& rnn_desc,
const dnn::RnnSequenceTensorDescriptor& input_desc,
const DeviceMemory<Eigen::half>& input_data,
const dnn::RnnStateTensorDescriptor& input_h_desc,
const DeviceMemory<Eigen::half>& input_h_data,
const dnn::RnnStateTensorDescriptor& input_c_desc,
const DeviceMemory<Eigen::half>& input_c_data,
const DeviceMemory<Eigen::half>& params,
const dnn::RnnSequenceTensorDescriptor& output_desc,
DeviceMemory<Eigen::half>* output_data,
const dnn::RnnStateTensorDescriptor& output_h_desc,
DeviceMemory<Eigen::half>* output_h_data,
const dnn::RnnStateTensorDescriptor& output_c_desc,
DeviceMemory<Eigen::half>* output_c_data, bool is_training,
ScratchAllocator* reserve_space_allocator,
ScratchAllocator* workspace_allocator,
dnn::ProfileResult* output_profile_result) override;
bool DoRnnForward(Stream* stream, const dnn::RnnDescriptor& rnn_desc,
const dnn::RnnSequenceTensorDescriptor& input_desc,
const DeviceMemory<float>& input_data,
const dnn::RnnStateTensorDescriptor& input_h_desc,
const DeviceMemory<float>& input_h_data,
const dnn::RnnStateTensorDescriptor& input_c_desc,
const DeviceMemory<float>& input_c_data,
const DeviceMemory<float>& params,
const dnn::RnnSequenceTensorDescriptor& output_desc,
DeviceMemory<float>* output_data,
const dnn::RnnStateTensorDescriptor& output_h_desc,
DeviceMemory<float>* output_h_data,
const dnn::RnnStateTensorDescriptor& output_c_desc,
DeviceMemory<float>* output_c_data, bool is_training,
ScratchAllocator* reserve_space_allocator,
ScratchAllocator* workspace_allocator,
dnn::ProfileResult* output_profile_result) override;
bool DoRnnForward(Stream* stream, const dnn::RnnDescriptor& rnn_desc,
const dnn::RnnSequenceTensorDescriptor& input_desc,
const DeviceMemory<double>& input_data,
const dnn::RnnStateTensorDescriptor& input_h_desc,
const DeviceMemory<double>& input_h_data,
const dnn::RnnStateTensorDescriptor& input_c_desc,
const DeviceMemory<double>& input_c_data,
const DeviceMemory<double>& params,
const dnn::RnnSequenceTensorDescriptor& output_desc,
DeviceMemory<double>* output_data,
const dnn::RnnStateTensorDescriptor& output_h_desc,
DeviceMemory<double>* output_h_data,
const dnn::RnnStateTensorDescriptor& output_c_desc,
DeviceMemory<double>* output_c_data, bool is_training,
ScratchAllocator* reserve_space_allocator,
ScratchAllocator* workspace_allocator,
dnn::ProfileResult* output_profile_result) override;
bool DoRnnBackward(Stream* stream, const dnn::RnnDescriptor& rnn_desc,
const dnn::RnnSequenceTensorDescriptor& input_desc,
const DeviceMemory<Eigen::half>& input_data,
const dnn::RnnStateTensorDescriptor& input_h_desc,
const DeviceMemory<Eigen::half>& input_h_data,
const dnn::RnnStateTensorDescriptor& input_c_desc,
const DeviceMemory<Eigen::half>& input_c_data,
const DeviceMemory<Eigen::half>& params,
const dnn::RnnSequenceTensorDescriptor& output_desc,
const DeviceMemory<Eigen::half>& output_data,
const dnn::RnnStateTensorDescriptor& output_h_desc,
const DeviceMemory<Eigen::half>& output_h_data,
const dnn::RnnStateTensorDescriptor& output_c_desc,
const DeviceMemory<Eigen::half>& output_c_data,
const DeviceMemory<Eigen::half>& output_backprop_data,
const DeviceMemory<Eigen::half>& output_h_backprop_data,
const DeviceMemory<Eigen::half>& output_c_backprop_data,
DeviceMemory<Eigen::half>* input_backprop_data,
DeviceMemory<Eigen::half>* input_h_backprop_data,
DeviceMemory<Eigen::half>* input_c_backprop_data,
DeviceMemory<Eigen::half>* params_backprop_data,
DeviceMemory<uint8>* reserve_space_data,
ScratchAllocator* workspace_allocator,
dnn::ProfileResult* output_profile_result) override;
bool DoRnnBackward(Stream* stream, const dnn::RnnDescriptor& rnn_desc,
const dnn::RnnSequenceTensorDescriptor& input_desc,
const DeviceMemory<float>& input_data,
const dnn::RnnStateTensorDescriptor& input_h_desc,
const DeviceMemory<float>& input_h_data,
const dnn::RnnStateTensorDescriptor& input_c_desc,
const DeviceMemory<float>& input_c_data,
const DeviceMemory<float>& params,
const dnn::RnnSequenceTensorDescriptor& output_desc,
const DeviceMemory<float>& output_data,
const dnn::RnnStateTensorDescriptor& output_h_desc,
const DeviceMemory<float>& output_h_data,
const dnn::RnnStateTensorDescriptor& output_c_desc,
const DeviceMemory<float>& output_c_data,
const DeviceMemory<float>& output_backprop_data,
const DeviceMemory<float>& output_h_backprop_data,
const DeviceMemory<float>& output_c_backprop_data,
DeviceMemory<float>* input_backprop_data,
DeviceMemory<float>* input_h_backprop_data,
DeviceMemory<float>* input_c_backprop_data,
DeviceMemory<float>* params_backprop_data,
DeviceMemory<uint8>* reserve_space_data,
ScratchAllocator* workspace_allocator,
dnn::ProfileResult* output_profile_result) override;
bool DoRnnBackward(Stream* stream, const dnn::RnnDescriptor& rnn_desc,
const dnn::RnnSequenceTensorDescriptor& input_desc,
const DeviceMemory<double>& input_data,
const dnn::RnnStateTensorDescriptor& input_h_desc,
const DeviceMemory<double>& input_h_data,
const dnn::RnnStateTensorDescriptor& input_c_desc,
const DeviceMemory<double>& input_c_data,
const DeviceMemory<double>& params,
const dnn::RnnSequenceTensorDescriptor& output_desc,
const DeviceMemory<double>& output_data,
const dnn::RnnStateTensorDescriptor& output_h_desc,
const DeviceMemory<double>& output_h_data,
const dnn::RnnStateTensorDescriptor& output_c_desc,
const DeviceMemory<double>& output_c_data,
const DeviceMemory<double>& output_backprop_data,
const DeviceMemory<double>& output_h_backprop_data,
const DeviceMemory<double>& output_c_backprop_data,
DeviceMemory<double>* input_backprop_data,
DeviceMemory<double>* input_h_backprop_data,
DeviceMemory<double>* input_c_backprop_data,
DeviceMemory<double>* params_backprop_data,
DeviceMemory<uint8>* reserve_space_data,
ScratchAllocator* workspace_allocator,
dnn::ProfileResult* output_profile_result) override;
bool GetConvolveAlgorithms(
bool with_winograd_nonfused, int cc_major, int cc_minor,
std::vector<dnn::AlgorithmDesc>* out_algorithms) override;
bool GetMIOpenConvolveAlgorithms(
dnn::ConvolutionKind kind, dnn::DataType element_type, Stream* stream,
const dnn::BatchDescriptor& input_descriptor, DeviceMemoryBase input_data,
const dnn::FilterDescriptor& filter_descriptor,
DeviceMemoryBase filter_data,
const dnn::BatchDescriptor& output_descriptor,
DeviceMemoryBase output_data,
const dnn::ConvolutionDescriptor& convolution_descriptor,
ScratchAllocator* scratch_allocator,
std::vector<dnn::ProfileResult>* out_algorithms) override;
bool GetRnnAlgorithms(
std::vector<dnn::AlgorithmDesc>* out_algorithms) override;
bool GetConvolveBackwardDataAlgorithms(
bool with_winograd_nonfused, int cc_major, int cc_minor,
std::vector<dnn::AlgorithmDesc>* out_algorithms) override;
bool GetConvolveBackwardFilterAlgorithms(
bool with_winograd_nonfused, int cc_major, int cc_minor,
std::vector<dnn::AlgorithmDesc>* out_algorithms) override;
bool DoBatchNormalizationForward(
Stream* stream, const DeviceMemory<float>& x,
const DeviceMemory<float>& scale, const DeviceMemory<float>& offset,
const DeviceMemory<float>& estimated_mean,
const DeviceMemory<float>& estimated_variance,
const DeviceMemory<float>& side_input, const dnn::BatchDescriptor& x_desc,
const dnn::BatchDescriptor& scale_offset_desc, const double epsilon,
const double exponential_average_factor,
dnn::ActivationMode activation_mode, DeviceMemory<float>* y,
DeviceMemory<float>* batch_mean, DeviceMemory<float>* batch_var,
DeviceMemory<float>* saved_mean, DeviceMemory<float>* saved_inv_var,
bool is_training, ScratchAllocator* reserve_space_allocator,
ScratchAllocator* workspace_allocator) override;
bool DoBatchNormalizationForward(
Stream* stream, const DeviceMemory<Eigen::half>& x,
const DeviceMemory<float>& scale, const DeviceMemory<float>& offset,
const DeviceMemory<float>& estimated_mean,
const DeviceMemory<float>& estimated_variance,
const DeviceMemory<float>& side_input, const dnn::BatchDescriptor& x_desc,
const dnn::BatchDescriptor& scale_offset_desc, const double epsilon,
const double exponential_average_factor,
dnn::ActivationMode activation_mode, DeviceMemory<Eigen::half>* y,
DeviceMemory<float>* batch_mean, DeviceMemory<float>* batch_var,
DeviceMemory<float>* saved_mean, DeviceMemory<float>* saved_inv_var,
bool is_training, ScratchAllocator* reserve_space_allocator,
ScratchAllocator* workspace_allocator) override;
bool DoBatchNormalizationBackward(
Stream* stream, const DeviceMemory<float>& y_backprop,
const DeviceMemory<float>& x, const DeviceMemory<float>& scale,
const DeviceMemory<float>& mean, const DeviceMemory<float>& variance,
const dnn::BatchDescriptor& x_desc,
const dnn::BatchDescriptor& scale_offset_desc, const double epsilon,
DeviceMemory<float>* x_backprop, DeviceMemory<float>* scale_backprop,
DeviceMemory<float>* offset_backprop,
DeviceMemory<uint8>* reserve_space_data,
ScratchAllocator* workspace_allocator) override;
bool DoBatchNormalizationBackward(
Stream* stream, const DeviceMemory<Eigen::half>& y_backprop,
const DeviceMemory<Eigen::half>& x, const DeviceMemory<float>& scale,
const DeviceMemory<float>& mean, const DeviceMemory<float>& inv_var,
const dnn::BatchDescriptor& x_desc,
const dnn::BatchDescriptor& scale_offset_desc, const double epsilon,
DeviceMemory<Eigen::half>* x_backprop,
DeviceMemory<float>* scale_backprop, DeviceMemory<float>* offset_backprop,
DeviceMemory<uint8>* reserve_space_data,
ScratchAllocator* workspace_allocator) override;
port::Status DoConvolve(
dnn::ConvolutionKind kind, dnn::DataType element_type,
dnn::DataType output_type, Stream* stream,
const dnn::BatchDescriptor& input_descriptor, DeviceMemoryBase input_data,
const dnn::FilterDescriptor& filter_descriptor,
DeviceMemoryBase filter_data,
const dnn::BatchDescriptor& output_descriptor,
DeviceMemoryBase output_data,
const dnn::ConvolutionDescriptor& convolution_descriptor,
dnn::AlgorithmDesc algorithm_desc, DeviceMemory<uint8> scratch_memory,
dnn::ProfileResult* output_profile_result) override;
bool DoFusedConvolve(
Stream* stream, const dnn::BatchDescriptor& conv_input_descriptor,
const DeviceMemory<double>& conv_input_data, double conv_input_scale,
const dnn::FilterDescriptor& filter_descriptor,
const DeviceMemory<double>& filter_data,
const dnn::ConvolutionDescriptor& convolution_descriptor,
const DeviceMemory<double>& side_input_data, double side_input_scale,
const dnn::BatchDescriptor& bias_descriptor,
const DeviceMemory<double>& biases, dnn::ActivationMode activation_mode,
const dnn::BatchDescriptor& output_descriptor,
DeviceMemory<double>* output_data, ScratchAllocator* scratch_allocator,
const dnn::AlgorithmConfig& algorithm_config,
dnn::ProfileResult* output_profile_result) override;
bool DoFusedConvolve(
Stream* stream, const dnn::BatchDescriptor& conv_input_descriptor,
const DeviceMemory<float>& conv_input_data, float conv_input_scale,
const dnn::FilterDescriptor& filter_descriptor,
const DeviceMemory<float>& filter_data,
const dnn::ConvolutionDescriptor& convolution_descriptor,
const DeviceMemory<float>& side_input_data, float side_input_scale,
const dnn::BatchDescriptor& bias_descriptor,
const DeviceMemory<float>& biases, dnn::ActivationMode activation_mode,
const dnn::BatchDescriptor& output_descriptor,
DeviceMemory<float>* output_data, ScratchAllocator* scratch_allocator,
const dnn::AlgorithmConfig& algorithm_config,
dnn::ProfileResult* output_profile_result) override;
bool DoFusedConvolve(Stream* stream,
const dnn::BatchDescriptor& conv_input_descriptor,
const DeviceMemory<Eigen::half>& conv_input_data,
float conv_input_scale,
const dnn::FilterDescriptor& filter_descriptor,
const DeviceMemory<Eigen::half>& filter_data,
const dnn::ConvolutionDescriptor& convolution_descriptor,
const DeviceMemory<Eigen::half>& side_input_data,
float side_input_scale,
const dnn::BatchDescriptor& bias_descriptor,
const DeviceMemory<Eigen::half>& biases,
dnn::ActivationMode activation_mode,
const dnn::BatchDescriptor& output_descriptor,
DeviceMemory<Eigen::half>* output_data,
ScratchAllocator* scratch_allocator,
const dnn::AlgorithmConfig& algorithm_config,
dnn::ProfileResult* output_profile_result) override;
bool DoFusedConvolve(
Stream* stream, const dnn::BatchDescriptor& conv_input_descriptor,
const DeviceMemory<int8>& conv_input_data, float conv_input_scale,
const dnn::FilterDescriptor& filter_descriptor,
const DeviceMemory<int8>& filter_data,
const dnn::ConvolutionDescriptor& convolution_descriptor,
const DeviceMemory<int8>& side_input_data, float side_input_scale,
const dnn::BatchDescriptor& bias_descriptor,
const DeviceMemory<float>& biases, dnn::ActivationMode activation_mode,
const dnn::BatchDescriptor& output_descriptor,
DeviceMemory<int8>* output_data, ScratchAllocator* scratch_allocator,
const dnn::AlgorithmConfig& algorithm_config,
dnn::ProfileResult* output_profile_result) override;
bool DoConvolveQuantized(
Stream* stream, const dnn::BatchDescriptor& input_descriptor,
const DeviceMemory<float>& input_data,
const dnn::FilterDescriptor& filter_descriptor,
const DeviceMemory<int8>& filter_coefficients,
const DeviceMemory<float>& coefficient_scales,
const dnn::ConvolutionDescriptor& convolution_descriptor,
const dnn::BatchDescriptor& output_descriptor,
DeviceMemory<float>* output_data) override {
LOG(ERROR) << "DoConvolveQuantized not supported by MIOpen";
return false;
}
bool DoConvolveQuantized(
Stream* stream, const dnn::BatchDescriptor& input_descriptor,
const DeviceMemory<float>& input_data,
const dnn::FilterDescriptor& filter_descriptor,
const DeviceMemory<int16>& filter_coefficients,
const DeviceMemory<float>& coefficient_scales,
const dnn::ConvolutionDescriptor& convolution_descriptor,
const dnn::BatchDescriptor& output_descriptor,
DeviceMemory<float>* output_data) override {
LOG(ERROR) << "DoConvolveQuantized not supported by MIOpen";
return false;
}
bool DoSeparableConvolve(
Stream* stream, const dnn::BatchDescriptor& batch_descriptor,
const DeviceMemory<float>& input_data,
const dnn::FilterDescriptor& filter_descriptor, int depth_multiplier,
const DeviceMemory<float>& first_weights,
const DeviceMemory<float>& second_weights,
const dnn::ConvolutionDescriptor& convolution_descriptor,
const dnn::BatchDescriptor& output_descriptor,
DeviceMemory<float>* output_data) override {
LOG(ERROR) << "separable convolution not supported by MIOpen";
return false;
}
bool DoConvolveBackwardBias(
Stream* stream, const dnn::BatchDescriptor& input_descriptor,
const DeviceMemory<double>& input_data,
const dnn::BatchDescriptor& bias_descriptor,
DeviceMemory<double>* backward_bias_data) override;
bool DoConvolveBackwardBias(Stream* stream,
const dnn::BatchDescriptor& input_descriptor,
const DeviceMemory<float>& input_data,
const dnn::BatchDescriptor& bias_descriptor,
DeviceMemory<float>* backward_bias_data) override;
bool DoConvolveBackwardBias(
Stream* stream, const dnn::BatchDescriptor& input_descriptor,
const DeviceMemory<Eigen::half>& input_data,
const dnn::BatchDescriptor& bias_descriptor,
DeviceMemory<Eigen::half>* backward_bias_data) override;
bool DoMatMul(Stream* stream, const DeviceMemory<float>& input_data,
const DeviceMemory<float>& weights,
const dnn::BatchDescriptor& input_dimensions,
const dnn::BatchDescriptor& output_dimensions,
DeviceMemory<float>* output_data) override;
bool DoMatMulQuantized(Stream* stream, const DeviceMemory<float>& input_data,
const DeviceMemory<int8>& quantized_weights,
const DeviceMemory<float>& weight_scales,
const dnn::BatchDescriptor& input_dimensions,
const dnn::BatchDescriptor& output_dimensions,
DeviceMemory<float>* output_data) override {
LOG(ERROR) << "DNN MatMulQuantized not supported by MIOpen";
return false;
}
bool DoMatMulQuantized(Stream* stream, const DeviceMemory<float>& input_data,
const DeviceMemory<int16>& quantized_weights,
const DeviceMemory<float>& weight_scales,
const dnn::BatchDescriptor& input_dimensions,
const dnn::BatchDescriptor& output_dimensions,
DeviceMemory<float>* output_data) override {
LOG(ERROR) << "DNN MatMulQuantized not supported by MIOpen";
return false;
}
bool DoBiasAdd(Stream* stream, const DeviceMemory<float>& input_data,
const DeviceMemory<float>& biases,
const dnn::BatchDescriptor& dimensions,
DeviceMemory<float>* output_data) override;
bool DoActivate(Stream* stream, dnn::ActivationMode activation_mode,
const dnn::BatchDescriptor& dimensions,
const DeviceMemory<float>& input_data,
DeviceMemory<float>* output_data, uint64 options) override;
bool DoPoolForward(Stream* stream,
const dnn::PoolingDescriptor& pooling_dimensions,
const dnn::BatchDescriptor& input_dimensions,
const DeviceMemory<double>& input_data,
const dnn::BatchDescriptor& output_dimensions,
DeviceMemory<double>* output_data,
ScratchAllocator* workspace_allocator = nullptr) override;
bool DoPoolForward(Stream* stream,
const dnn::PoolingDescriptor& pooling_dimensions,
const dnn::BatchDescriptor& input_dimensions,
const DeviceMemory<float>& input_data,
const dnn::BatchDescriptor& output_dimensions,
DeviceMemory<float>* output_data,
ScratchAllocator* workspace_allocator = nullptr) override;
bool DoPoolForward(Stream* stream,
const dnn::PoolingDescriptor& pooling_dimensions,
const dnn::BatchDescriptor& input_dimensions,
const DeviceMemory<Eigen::half>& input_data,
const dnn::BatchDescriptor& output_dimensions,
DeviceMemory<Eigen::half>* output_data,
ScratchAllocator* workspace_allocator = nullptr) override;
bool DoPoolBackward(Stream* stream,
const dnn::PoolingDescriptor& pooling_dimensions,
const dnn::BatchDescriptor& input_dimensions,
const DeviceMemory<double>& input_data,
const dnn::BatchDescriptor& output_dimensions,
const DeviceMemory<double>& output_data,
const DeviceMemory<double>& input_diff_data,
DeviceMemory<double>* output_diff_data,
ScratchAllocator* workspace_allocator = nullptr) override;
bool DoPoolBackward(Stream* stream,
const dnn::PoolingDescriptor& pooling_dimensions,
const dnn::BatchDescriptor& input_dimensions,
const DeviceMemory<float>& input_data,
const dnn::BatchDescriptor& output_dimensions,
const DeviceMemory<float>& output_data,
const DeviceMemory<float>& input_diff_data,
DeviceMemory<float>* output_diff_data,
ScratchAllocator* workspace_allocator = nullptr) override;
bool DoPoolBackward(Stream* stream,
const dnn::PoolingDescriptor& pooling_dimensions,
const dnn::BatchDescriptor& input_dimensions,
const DeviceMemory<Eigen::half>& input_data,
const dnn::BatchDescriptor& output_dimensions,
const DeviceMemory<Eigen::half>& output_data,
const DeviceMemory<Eigen::half>& input_diff_data,
DeviceMemory<Eigen::half>* output_diff_data,
ScratchAllocator* workspace_allocator = nullptr) override;
bool DoNormalizeWithDimensions(
Stream* stream, const dnn::NormalizeDescriptor& normalize_descriptor,
const dnn::BatchDescriptor& dimensions,
const DeviceMemory<float>& input_data,
DeviceMemory<float>* output_data) override;
bool DoNormalizeBackwardWithDimensions(
Stream* stream, const dnn::NormalizeDescriptor& normalize_descriptor,
const dnn::BatchDescriptor& dimensions,
const DeviceMemory<float>& raw_data,
const DeviceMemory<float>& normalized_data,
const DeviceMemory<float>& normalized_variable_gradient,
DeviceMemory<float>* raw_variable_gradient,
ScratchAllocator* workspace_allocator = nullptr) override;
bool DoDepthConcatenate(
Stream* stream, port::ArraySlice<dnn::BatchDescriptor> input_dimensions,
port::ArraySlice<const DeviceMemory<float>*> input_data,
DeviceMemory<float>* output_data) override;
bool DoElementwiseOperate(
Stream* stream, dnn::ElementwiseOperation operation,
port::ArraySlice<dnn::BatchDescriptor> input_dimensions,
port::ArraySlice<const DeviceMemory<float>*> input_data,
const dnn::BatchDescriptor& output_dimensions,
DeviceMemory<float>* output_data) override;
bool DoXYPad(Stream* stream, const dnn::BatchDescriptor& dimensions,
const DeviceMemory<float>& input_data, int64 left_pad,
int64 right_pad, int64 top_pad, int64 bottom_pad,
DeviceMemory<float>* output_data) override;
bool DoXYSlice(Stream* stream, const dnn::BatchDescriptor& dimensions,
const DeviceMemory<float>& input_data, int64 left_trim,
int64 right_trim, int64 top_trim, int64 bottom_trim,
DeviceMemory<float>* output_data) override;
bool DoMemcpyD2HQuantized(Stream* stream,
const DeviceMemory<float>& device_unquantized_src,
dnn::QuantizedActivationMode mode, void* host_dst,
int64 size) override;
bool DoMemcpyH2DQuantized(
Stream* stream, const void* host_src, int64 size,
dnn::QuantizedActivationMode mode,
DeviceMemory<float>* device_unquantized_dst) override;
// Derives an output batch descriptor from an input batch and convolution
// descriptors.
bool DeriveOutputBatchDescriptor(
const dnn::BatchDescriptor& batch_descriptor,
const dnn::FilterDescriptor& filter_descriptor,
const dnn::ConvolutionDescriptor& convolution_descriptor,
dnn::BatchDescriptor* output_batch_descriptor);
bool DoTransformTensor(Stream* stream, const dnn::BatchDescriptor& input_desc,
dnn::DataType input_type,
const DeviceMemoryBase& input_data,
const dnn::BatchDescriptor& output_desc,
dnn::DataType output_type, float scale,
DeviceMemoryBase* output_data) override;
bool DoFusedConvolutionBiasActivation(
Stream* stream, const dnn::BatchDescriptor& conv_input_descriptor,
const DeviceMemory<float>& conv_input_data,
const dnn::FilterDescriptor& filter_descriptor,
const DeviceMemory<float>& filter_data,
const dnn::ConvolutionDescriptor& convolution_descriptor,
const dnn::BatchDescriptor& bias_descriptor,
const DeviceMemory<float>& bias_data, dnn::ActivationMode activation_mode,
const dnn::BatchDescriptor& output_descriptor,
DeviceMemory<float>* output_data,
dnn::ProfileResult* output_profile_result) override;
bool DoFusedBatchNormActivationInference(
Stream* stream, const dnn::BatchDescriptor& x_descriptor,
const DeviceMemory<float>& x_data,
const dnn::BatchDescriptor& scale_mean_variance_descriptor,
const DeviceMemory<float>& scale_data,
const DeviceMemory<float>& offset_data,
const DeviceMemory<float>& mean_data,
const DeviceMemory<float>& variance_data, double epsilon,
dnn::ActivationMode activation_mode, DeviceMemory<float>* y_data,
dnn::ProfileResult* output_profile_result) override;
bool DoFusedBatchNormActivationInference(
Stream* stream, const dnn::BatchDescriptor& x_descriptor,
const DeviceMemory<Eigen::half>& x_data,
const dnn::BatchDescriptor& scale_mean_variance_descriptor,
const DeviceMemory<float>& scale_data,
const DeviceMemory<float>& offset_data,
const DeviceMemory<float>& mean_data,
const DeviceMemory<float>& variance_data, double epsilon,
dnn::ActivationMode activation_mode, DeviceMemory<Eigen::half>* y_data,
dnn::ProfileResult* output_profile_result) override;
bool DoFusedBatchNormActivationForward(
Stream* stream, const dnn::BatchDescriptor& x_descriptor,
const DeviceMemory<float>& x_data,
const dnn::BatchDescriptor& scale_offset_mean_variance_descriptor,
const DeviceMemory<float>& scale_data,
const DeviceMemory<float>& offset_data, double epsilon,
dnn::ActivationMode activation_mode, DeviceMemory<float>* y_data,
DeviceMemory<float>* batch_mean_data, DeviceMemory<float>* batch_var_data,
DeviceMemory<float>* saved_mean_data, DeviceMemory<float>* saved_var_data,
dnn::ProfileResult* output_profile_result) override;
bool DoFusedBatchNormActivationForward(
Stream* stream, const dnn::BatchDescriptor& x_descriptor,
const DeviceMemory<Eigen::half>& x_data,
const dnn::BatchDescriptor& scale_offset_mean_variance_descriptor,
const DeviceMemory<float>& scale_data,
const DeviceMemory<float>& offset_data, double epsilon,
dnn::ActivationMode activation_mode, DeviceMemory<Eigen::half>* y_data,
DeviceMemory<float>* batch_mean_data, DeviceMemory<float>* batch_var_data,
DeviceMemory<float>* saved_mean_data, DeviceMemory<float>* saved_var_data,
dnn::ProfileResult* output_profile_result) override;
bool DoFusedBatchNormActivationBackward(
Stream* stream, const dnn::BatchDescriptor& y_act_backprop_descriptor,
const DeviceMemory<float>& y_act_backprop_data,
const DeviceMemory<float>& y_act_data,
dnn::ActivationMode activation_mode, const DeviceMemory<float>& x_bn_data,
const dnn::BatchDescriptor& scale_offset_mean_variance_descriptor,
const DeviceMemory<float>& scale_data,
const DeviceMemory<float>& offset_data,
const DeviceMemory<float>& saved_mean_data,
const DeviceMemory<float>& saved_var_data,
DeviceMemory<float>* x_bn_backprop_data,
DeviceMemory<float>* scale_backprop_data,
DeviceMemory<float>* offset_backprop_data,
dnn::ProfileResult* output_profile_result) override;
bool DoFusedBatchNormActivationBackward(
Stream* stream, const dnn::BatchDescriptor& y_act_backprop_descriptor,
const DeviceMemory<Eigen::half>& y_act_backprop_data,
const DeviceMemory<Eigen::half>& y_act_data,
dnn::ActivationMode activation_mode,
const DeviceMemory<Eigen::half>& x_bn_data,
const dnn::BatchDescriptor& scale_offset_mean_variance_descriptor,
const DeviceMemory<float>& scale_data,
const DeviceMemory<float>& offset_data,
const DeviceMemory<float>& saved_mean_data,
const DeviceMemory<float>& saved_var_data,
DeviceMemory<Eigen::half>* x_bn_backprop_data,
DeviceMemory<float>* scale_backprop_data,
DeviceMemory<float>* offset_backprop_data,
dnn::ProfileResult* output_profile_result) override;
GpuExecutor* GetParentExecutor() { return parent_; }
port::Status DoCtcLoss(Stream* stream, dnn::DataType element_type,
const dnn::RnnStateTensorDescriptor& probs_desc,
const DeviceMemoryBase probs_data,
absl::Span<const int> labels_data,
absl::Span<const int> labels_lengths_data,
absl::Span<const int> input_lengths_data,
DeviceMemoryBase costs_data,
const dnn::RnnStateTensorDescriptor& grads_desc,
DeviceMemoryBase grads_data,
DeviceMemory<uint8> scratch_memory,
int ctc_loss_algo_id) override;
private:
GpuExecutor* parent_; // Parent executor object. Not owned.
// Flag to indicate whether Get*Algorithm routines should only return
// the best algorithm (as opposed to a list of all applicable ones)
bool return_best_algo_only_;
// Flag to indicate whether to use Immediate (or Find) mode for Convolutions
bool use_immediate_mode_;
// Provide access to the MIOpen handle.
std::unique_ptr<class MIOpenAccess> miopen_;
template <class T, class U>
bool DoBatchNormalizationForwardImpl(
Stream* stream, dnn::DataType input_data_type,
dnn::DataType scale_data_type, const DeviceMemory<T>& x,
const DeviceMemory<U>& scale, const DeviceMemory<U>& offset,
const DeviceMemory<U>& estimated_mean,
const DeviceMemory<U>& estimated_variance,
const DeviceMemory<U>& side_input, const dnn::BatchDescriptor& x_desc,
const dnn::BatchDescriptor& scale_offset_desc, const double epsilon,
const double exponential_average_factor,
dnn::ActivationMode activation_mode, DeviceMemory<T>* y,
DeviceMemory<U>* batch_mean, DeviceMemory<U>* batch_var,
DeviceMemory<U>* saved_mean, DeviceMemory<U>* saved_inv_var,
bool is_training);
template <class T, class U>
bool DoBatchNormalizationBackwardImpl(
Stream* stream, int miopen_input_type, int miopen_scale_type,
const DeviceMemory<T>& y_backprop, const DeviceMemory<T>& x,
const DeviceMemory<U>& scale, const DeviceMemory<U>& mean,
const DeviceMemory<U>& variance, const dnn::BatchDescriptor& x_desc,
const dnn::BatchDescriptor& scale_offset_desc, const double epsilon,
DeviceMemory<T>* x_backprop, DeviceMemory<U>* scale_backprop,
DeviceMemory<U>* offset_backprop);
template <class T>
bool DoConvolveBackwardBiasImpl(
Stream* stream,
int miopen_type, // Actually miopenDataType_t.
const dnn::BatchDescriptor& input_descriptor,
const DeviceMemory<T>& input_data,
const dnn::BatchDescriptor& bias_descriptor,
DeviceMemory<T>* backward_bias_data);
template <class T>
bool DoRnnForwardImpl(Stream* stream, const MIOpenRnnDescriptor& rnn_desc,
const MIOpenRnnSequenceTensorDescriptor& input_desc,
const DeviceMemory<T>& input_data,
const MIOpenRnnStateTensorDescriptor& input_h_desc,
const DeviceMemory<T>& input_h_data,
const MIOpenRnnStateTensorDescriptor& input_c_desc,
const DeviceMemory<T>& input_c_data,
const DeviceMemory<T>& params,
const MIOpenRnnSequenceTensorDescriptor& output_desc,
DeviceMemory<T>* output_data,
const MIOpenRnnStateTensorDescriptor& output_h_desc,
DeviceMemory<T>* output_h_data,
const MIOpenRnnStateTensorDescriptor& output_c_desc,
DeviceMemory<T>* output_c_data, bool is_training,
ScratchAllocator* reserve_space_allocator,
ScratchAllocator* workspace_allocator);
template <class T>
bool DoRnnBackwardImpl(Stream* stream, const MIOpenRnnDescriptor& rnn_desc,
const MIOpenRnnSequenceTensorDescriptor& input_desc,
const DeviceMemory<T>& input_data,
const MIOpenRnnStateTensorDescriptor& input_h_desc,
const DeviceMemory<T>& input_h_data,
const MIOpenRnnStateTensorDescriptor& input_c_desc,
const DeviceMemory<T>& input_c_data,
const DeviceMemory<T>& params,
const MIOpenRnnSequenceTensorDescriptor& output_desc,
const DeviceMemory<T>& output_data,
const MIOpenRnnStateTensorDescriptor& output_h_desc,
const DeviceMemory<T>& output_h_data,
const MIOpenRnnStateTensorDescriptor& output_c_desc,
const DeviceMemory<T>& output_c_data,
const DeviceMemory<T>& output_backprop_data,
const DeviceMemory<T>& output_h_backprop_data,
const DeviceMemory<T>& output_c_backprop_data,
DeviceMemory<T>* input_backprop_data,
DeviceMemory<T>* input_h_backprop_data,
DeviceMemory<T>* input_c_backprop_data,
DeviceMemory<T>* params_backprop_data,
DeviceMemory<uint8>* reserve_space_data,
ScratchAllocator* workspace_allocator);
template <typename T>
bool DoFusedConvolutionBiasActivationImpl(
Stream* stream,
int miopen_type, // Actually miopenDataType_t.
const dnn::BatchDescriptor& conv_input_descriptor,
const DeviceMemory<T>& conv_input_data,
const dnn::FilterDescriptor& filter_descriptor,
const DeviceMemory<T>& filter_data,
const dnn::ConvolutionDescriptor& convolution_descriptor,
const dnn::BatchDescriptor& bias_descriptor,
const DeviceMemory<T>& bias_data, dnn::ActivationMode activation_mode,
const dnn::BatchDescriptor& output_descriptor,
DeviceMemory<T>* output_data, dnn::ProfileResult* output_profile_result);
template <typename T, typename U>
bool DoFusedBatchNormActivationInferenceImpl(
Stream* stream,
int miopen_type, // Actually miopenDataType_t.
const dnn::BatchDescriptor& x_descriptor, const DeviceMemory<T>& x_data,
const dnn::BatchDescriptor& scale_offset_mean_variance_descriptor,
const DeviceMemory<U>& scale_data, const DeviceMemory<U>& offset_data,
const DeviceMemory<U>& mean_data, const DeviceMemory<U>& variance_data,
double epsilon, dnn::ActivationMode activation_mode,
DeviceMemory<T>* y_data, dnn::ProfileResult* output_profile_result);
template <typename T, typename U>
bool DoFusedBatchNormActivationForwardImpl(
Stream* stream,
int miopen_type, // Actually miopenDataType_t.
const dnn::BatchDescriptor& x_descriptor, const DeviceMemory<T>& x_data,
const dnn::BatchDescriptor& scale_offset_mean_variance_descriptor,
const DeviceMemory<U>& scale_data, const DeviceMemory<U>& offset_data,
double epsilon, dnn::ActivationMode activation_mode,
DeviceMemory<T>* y_data, DeviceMemory<U>* batch_mean_data,
DeviceMemory<U>* batch_var_data, DeviceMemory<U>* saved_mean_data,
DeviceMemory<U>* saved_var_data,
dnn::ProfileResult* output_profile_result);
template <typename T, typename U>
bool DoFusedBatchNormActivationBackwardImpl(
Stream* stream,
int miopen_type, // Actually miopenDataType_t.
const dnn::BatchDescriptor& y_act_backprop_descriptor,
const DeviceMemory<T>& y_act_backprop_data,
const DeviceMemory<T>& y_act_data, dnn::ActivationMode activation_mode,
const DeviceMemory<T>& x_bn_data,
const dnn::BatchDescriptor& scale_offset_mean_variance_descriptor,
const DeviceMemory<U>& scale_data, const DeviceMemory<U>& offset_data,
const DeviceMemory<U>& saved_mean_data,
const DeviceMemory<U>& saved_var_data,
DeviceMemory<T>* x_bn_backprop_data, DeviceMemory<U>* scale_backprop_data,
DeviceMemory<U>* offset_backprop_data,
dnn::ProfileResult* output_profile_result);
port::Status DoPrepareForConvolution(
dnn::ConvolutionKind kind, dnn::DataType element_type, Stream* stream,
const dnn::BatchDescriptor& input_descriptor, DeviceMemoryBase input_data,
const dnn::FilterDescriptor& filter_descriptor,
DeviceMemoryBase filter_data,
const dnn::BatchDescriptor& output_descriptor,
DeviceMemoryBase output_data,
const dnn::ConvolutionDescriptor& convolution_descriptor,
const dnn::AlgorithmConfig& algorithm_config,
ScratchAllocator* scratch_allocator, dnn::AlgorithmDesc* algorithm_desc,
DeviceMemory<uint8>* scratch_memory) override;
port::Status DoCtcLossImpl(
Stream* stream, const MIOpenRnnStateTensorDescriptor& probs_desc,
const DeviceMemoryBase probs_data, absl::Span<const int> labels_data,
absl::Span<const int> labels_lengths_data,
absl::Span<const int> input_lengths_data, DeviceMemoryBase costs_data,
const MIOpenRnnStateTensorDescriptor& grads_desc,
DeviceMemoryBase grads_data, const MIOpenCTCLossDescriptor& ctc_loss_desc,
DeviceMemory<uint8> scratch_memory, int ctc_loss_algo_id);
port::Status DoPrepareForCtcLoss(
Stream* stream, dnn::DataType element_type,
const dnn::RnnStateTensorDescriptor& probs_desc,
const dnn::RnnStateTensorDescriptor& grads_desc,
absl::Span<const int> labels_data,
absl::Span<const int> labels_lengths_data,
absl::Span<const int> input_lengths_data,
ScratchAllocator* scratch_allocator, DeviceMemory<uint8>* scratch_memory,
int* ctc_loss_algo_id) override;
bool GetMIOpenConvolveAlgorithmsImmediateMode(
dnn::ConvolutionKind kind, dnn::DataType element_type, Stream* stream,
const dnn::BatchDescriptor& input_descriptor, DeviceMemoryBase input_data,
const dnn::FilterDescriptor& filter_descriptor,
DeviceMemoryBase filter_data,
const dnn::BatchDescriptor& output_descriptor,
DeviceMemoryBase output_data,
const dnn::ConvolutionDescriptor& convolution_descriptor,
ScratchAllocator* scratch_allocator,
std::vector<dnn::ProfileResult>* out_algorithms);
bool GetMIOpenConvolveAlgorithmsFindMode(
dnn::ConvolutionKind kind, dnn::DataType element_type, Stream* stream,
const dnn::BatchDescriptor& input_descriptor, DeviceMemoryBase input_data,
const dnn::FilterDescriptor& filter_descriptor,
DeviceMemoryBase filter_data,
const dnn::BatchDescriptor& output_descriptor,
DeviceMemoryBase output_data,
const dnn::ConvolutionDescriptor& convolution_descriptor,
ScratchAllocator* scratch_allocator,
std::vector<dnn::ProfileResult>* out_algorithms);
SE_DISALLOW_COPY_AND_ASSIGN(MIOpenSupport);
};
} // namespace gpu
} // namespace stream_executor
#endif // TENSORFLOW_STREAM_EXECUTOR_ROCM_ROCM_DNN_H_