94 lines
2.9 KiB
C++
94 lines
2.9 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/stream_executor/gpu/gpu_timer.h"
|
|
|
|
#include "tensorflow/stream_executor/gpu/gpu_driver.h"
|
|
#include "tensorflow/stream_executor/gpu/gpu_executor.h"
|
|
#include "tensorflow/stream_executor/gpu/gpu_stream.h"
|
|
#include "tensorflow/stream_executor/lib/status.h"
|
|
|
|
namespace stream_executor {
|
|
namespace gpu {
|
|
|
|
bool GpuTimer::Init() {
|
|
CHECK(start_event_ == nullptr && stop_event_ == nullptr);
|
|
GpuContext* context = parent_->gpu_context();
|
|
port::Status status = GpuDriver::InitEvent(context, &start_event_,
|
|
GpuDriver::EventFlags::kDefault);
|
|
if (!status.ok()) {
|
|
LOG(ERROR) << status;
|
|
return false;
|
|
}
|
|
|
|
status = GpuDriver::InitEvent(context, &stop_event_,
|
|
GpuDriver::EventFlags::kDefault);
|
|
if (!status.ok()) {
|
|
LOG(ERROR) << status;
|
|
status = GpuDriver::DestroyEvent(context, &start_event_);
|
|
if (!status.ok()) {
|
|
LOG(ERROR) << status;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
CHECK(start_event_ != nullptr && stop_event_ != nullptr);
|
|
return true;
|
|
}
|
|
|
|
void GpuTimer::Destroy() {
|
|
GpuContext* context = parent_->gpu_context();
|
|
port::Status status = GpuDriver::DestroyEvent(context, &start_event_);
|
|
if (!status.ok()) {
|
|
LOG(ERROR) << status;
|
|
}
|
|
|
|
status = GpuDriver::DestroyEvent(context, &stop_event_);
|
|
if (!status.ok()) {
|
|
LOG(ERROR) << status;
|
|
}
|
|
}
|
|
|
|
float GpuTimer::GetElapsedMilliseconds() const {
|
|
CHECK(start_event_ != nullptr && stop_event_ != nullptr);
|
|
// TODO(leary) provide a way to query timer resolution?
|
|
// CUDA docs say a resolution of about 0.5us
|
|
float elapsed_milliseconds = NAN;
|
|
(void)GpuDriver::GetEventElapsedTime(
|
|
parent_->gpu_context(), &elapsed_milliseconds, start_event_, stop_event_);
|
|
return elapsed_milliseconds;
|
|
}
|
|
|
|
bool GpuTimer::Start(GpuStream* stream) {
|
|
port::Status status = GpuDriver::RecordEvent(
|
|
parent_->gpu_context(), start_event_, stream->gpu_stream());
|
|
if (!status.ok()) {
|
|
LOG(ERROR) << status;
|
|
}
|
|
return status.ok();
|
|
}
|
|
|
|
bool GpuTimer::Stop(GpuStream* stream) {
|
|
port::Status status = GpuDriver::RecordEvent(
|
|
parent_->gpu_context(), stop_event_, stream->gpu_stream());
|
|
if (!status.ok()) {
|
|
LOG(ERROR) << status;
|
|
}
|
|
return status.ok();
|
|
}
|
|
|
|
} // namespace gpu
|
|
} // namespace stream_executor
|