Allen Lavoie 4d6f8114b0 Adds tf.train.experimental.PythonState
Allows users to hook into TF's object-based checkpointing with arbitrary Python state.

Doing this now for the TF Agents migration. This is a reasonable place to cutoff and expose a public API; the NumPy stuff can be copied out of contrib.

Experimental for now pending Trackable being exposed, since it may make more sense to combine the Variable/Tensor saving API with the non-Tensor Python state API.

PiperOrigin-RevId: 235579652
2019-02-25 12:47:48 -08:00

93 lines
2.8 KiB
Python

"""Utilities for including Python state in TensorFlow checkpoints."""
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
import functools
import six
from tensorflow.python.training.tracking import base
from tensorflow.python.util.tf_export import tf_export
@tf_export("train.experimental.PythonState")
@six.add_metaclass(abc.ABCMeta)
class PythonState(base.Trackable):
"""A mixin for putting Python state in an object-based checkpoint.
This is an abstract class which allows extensions to TensorFlow's object-based
checkpointing (see `tf.train.Checkpoint`). For example a wrapper for NumPy
arrays:
```python
import io
import numpy
class NumpyWrapper(tf.train.experimental.PythonState):
def __init__(self, array):
self.array = array
def serialize(self):
string_file = io.BytesIO()
try:
numpy.save(string_file, self.array, allow_pickle=False)
serialized = string_file.getvalue()
finally:
string_file.close()
return serialized
def deserialize(self, string_value):
string_file = io.BytesIO(string_value)
try:
self.array = numpy.load(string_file, allow_pickle=False)
finally:
string_file.close()
```
Instances of `NumpyWrapper` are checkpointable objects, and will be saved and
restored from checkpoints along with TensorFlow state like variables.
```python
root = tf.train.Checkpoint(numpy=NumpyWrapper(numpy.array([1.])))
save_path = root.save(prefix)
root.numpy.array *= 2.
assert [2.] == root.numpy.array
root.restore(save_path)
assert [1.] == root.numpy.array
```
"""
@abc.abstractmethod
def serialize(self):
"""Callback to serialize the object. Returns a string."""
@abc.abstractmethod
def deserialize(self, string_value):
"""Callback to deserialize the object."""
def _gather_saveables_for_checkpoint(self):
"""Specify callbacks for saving and restoring `array`."""
return {
"py_state": functools.partial(
base.PythonStringStateSaveable,
state_callback=self.serialize,
restore_callback=self.deserialize)
}