Also fix warning with deprecated assert method. PiperOrigin-RevId: 314782149 Change-Id: I0f02cd9908e584aa0b9404584e80d7679bbc5c1f
103 lines
3.9 KiB
Python
103 lines
3.9 KiB
Python
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for the SWIG-wrapped quantize training rewriting."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
|
|
from tensorflow.python.client import session
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import importer
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.ops import variables
|
|
from tensorflow.python.platform import test
|
|
from tensorflow.python.training import quantize_training
|
|
from tensorflow.python.training import saver as saver_module
|
|
|
|
|
|
class PywrapQuantizeTrainingTest(test.TestCase):
|
|
|
|
# Mainly to verify the python interface is working.
|
|
# More tests for this function can be found in the related c++ tests.
|
|
def testQuantizeTraining(self):
|
|
with session.Session() as sess:
|
|
a = constant_op.constant(6.0, shape=[1, 1])
|
|
b = constant_op.constant(7.0, shape=[1, 1])
|
|
c = math_ops.matmul(a, b, name='matmul')
|
|
|
|
self.assertEqual(c.eval(), 42.0)
|
|
self.assertEqual(len(sess.graph_def.node), 3)
|
|
|
|
result = quantize_training.do_quantize_training_on_graphdef(
|
|
sess.graph_def, 8)
|
|
|
|
# We just want to guarantee that some rewrite happened.
|
|
self.assertGreater(len(result.node), 3)
|
|
|
|
# Test that save/restoring works for EMA variables generated in the
|
|
# quantized training rewrite.
|
|
@test_util.run_v1_only('The API is only expect to work with v1 session mode.')
|
|
def testQuantizedSaveRestore(self):
|
|
save_path = os.path.join(self.get_temp_dir(), 'quantized_save_restore')
|
|
|
|
g = ops.Graph()
|
|
with session.Session(graph=g) as sess:
|
|
a = constant_op.constant(6.0, shape=[1, 1], name='a')
|
|
b = variables.VariableV1(
|
|
constant_op.constant(7.0, shape=[1, 1]), name='b')
|
|
c = math_ops.matmul(a, b, name='matmul')
|
|
|
|
init_op = variables.global_variables_initializer()
|
|
|
|
saver = saver_module.Saver({'b': b})
|
|
|
|
result = quantize_training.do_quantize_training_on_graphdef(
|
|
sess.graph_def, 8)
|
|
|
|
with ops.Graph().as_default() as g, session.Session(graph=g) as sess:
|
|
_ = importer.import_graph_def(result, name='')
|
|
|
|
# Initialize the variable.
|
|
self.evaluate(g.get_operation_by_name(init_op.name))
|
|
|
|
# Run the graph for one step to assign values to the quantization min/max
|
|
# variables.
|
|
self.evaluate(g.get_tensor_by_name(c.name))
|
|
|
|
saver.save(sess, save_path)
|
|
|
|
with ops.Graph().as_default() as g, session.Session(graph=g) as sess:
|
|
_ = importer.import_graph_def(result, name='')
|
|
|
|
# When we restore the saved variabled, the quantization variables should
|
|
# be restored as well.
|
|
saver.restore(sess, save_path)
|
|
self.assertEqual(7.0, sess.run(g.get_tensor_by_name('b:0')))
|
|
self.assertEqual(6.0, sess.run(g.get_tensor_by_name('a/Min/Variable:0')))
|
|
self.assertEqual(6.0, sess.run(g.get_tensor_by_name('a/Max/Variable:0')))
|
|
self.assertEqual(7.0,
|
|
sess.run(g.get_tensor_by_name('b/read/Min/Variable:0')))
|
|
self.assertEqual(7.0,
|
|
sess.run(g.get_tensor_by_name('b/read/Max/Variable:0')))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test.main()
|