STT-tensorflow/tensorflow/python/training/optimizer_test.py
A. Unique TensorFlower 019639ca42 Use same var key in _create_slots/get_slot in V1 optimizer
We have special handling for distributed variable in get_slot, but not
create_slot. This happens to work before but upcoming change in distributed
library will break it.

PiperOrigin-RevId: 301658655
Change-Id: I9fc3dd9bacb277a9a6c7d9dba743b5885cad59e4
2020-03-18 13:49:52 -07:00

275 lines
12 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functional test for optimizer."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import clip_ops
from tensorflow.python.ops import gradients_util
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import variables
from tensorflow.python.platform import test
from tensorflow.python.training import gradient_descent
class OptimizerTest(test.TestCase):
@test_util.run_in_graph_and_eager_modes
def testBasic(self):
for i, dtype in enumerate([dtypes.half, dtypes.float32, dtypes.float64]):
# Note that we name the variables uniquely here since the variables don't
# seem to be getting deleted at the end of the loop.
var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype,
name='a_%d' % i)
var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtype,
name='b_%d' % i)
def loss():
return 5 * var0 + 3 * var1 # pylint: disable=cell-var-from-loop
# Note that for eager execution, minimize expects a function instead of a
# Tensor.
global_step = resource_variable_ops.ResourceVariable(
array_ops.zeros([], dtypes.int64), name='global_step_%d' % i)
sgd_op = gradient_descent.GradientDescentOptimizer(3.0)
self.evaluate(variables.global_variables_initializer())
# Fetch params to validate initial values
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
# Run 1 step of sgd through optimizer
opt_op = sgd_op.minimize(loss, global_step, [var0, var1])
self.evaluate(opt_op)
# Validate updated params
self.assertAllClose([-14., -13.], self.evaluate(var0))
self.assertAllClose([-6., -5.], self.evaluate(var1))
@test_util.run_deprecated_v1
def testAggregationMethod(self):
for dtype in [dtypes.half, dtypes.float32, dtypes.float64]:
with self.cached_session():
var0 = variables.Variable([1.0, 2.0], dtype=dtype)
var1 = variables.Variable([3.0, 4.0], dtype=dtype)
cost = 5 * var0 + 3 * var1
global_step = variables.Variable(
array_ops.zeros([], dtypes.int64), name='global_step')
sgd_op = gradient_descent.GradientDescentOptimizer(3.0)
opt_op = sgd_op.minimize(
cost,
global_step, [var0, var1],
aggregation_method=gradients_util.AggregationMethod.
EXPERIMENTAL_ACCUMULATE_N)
variables.global_variables_initializer().run()
# Fetch params to validate initial values
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
# Run 1 step of sgd through optimizer
opt_op.run()
# Validate updated params
self.assertAllClose([-14., -13.], self.evaluate(var0))
self.assertAllClose([-6., -5.], self.evaluate(var1))
@test_util.run_deprecated_v1
def testPrecomputedGradient(self):
for dtype in [dtypes.half, dtypes.float32, dtypes.float64]:
with self.cached_session():
var0 = variables.Variable([1.0, 2.0], dtype=dtype)
var1 = variables.Variable([3.0, 4.0], dtype=dtype)
cost = 5 * var0 + 3 * var1
grad_loss = constant_op.constant([42, -42], dtype=dtype)
global_step = variables.Variable(
array_ops.zeros([], dtypes.int64), name='global_step')
sgd_op = gradient_descent.GradientDescentOptimizer(3.0)
opt_op = sgd_op.minimize(
cost, global_step, [var0, var1], grad_loss=grad_loss)
variables.global_variables_initializer().run()
# Fetch params to validate initial values
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
# Run 1 step of sgd through optimizer
opt_op.run()
# Validate updated params
self.assertAllClose([1.0 - 3 * 5 * 42.0, 2.0 - 3 * 5 * (-42.0)],
self.evaluate(var0))
self.assertAllClose([3.0 - 3 * 3 * 42.0, 4.0 - 3 * 3 * (-42.0)],
self.evaluate(var1))
@test_util.run_in_graph_and_eager_modes
def testNoVariables(self):
for dtype in [dtypes.half, dtypes.float32, dtypes.float64]:
# pylint: disable=cell-var-from-loop
def loss():
var0 = resource_variable_ops.ResourceVariable(
[1.0, 2.0], dtype=dtype, trainable=False, name='a')
var1 = resource_variable_ops.ResourceVariable(
[3.0, 4.0], dtype=dtype, trainable=False, name='b')
return 5 * var0 + var1
# pylint: enable=cell-var-from-loop
sgd_op = gradient_descent.GradientDescentOptimizer(3.0)
with self.assertRaisesRegexp(ValueError, 'No.*variables'):
sgd_op.minimize(loss)
@test_util.run_in_graph_and_eager_modes
def testNoGradients(self):
for i, dtype in enumerate([dtypes.half, dtypes.float32, dtypes.float64]):
# Note that we name the variables uniquely here since the variables don't
# seem to be getting deleted at the end of the loop.
var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype,
name='a%d' % i)
var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtype,
name='b%d' % i)
# pylint: disable=cell-var-from-loop
def loss():
return 5 * var0
# pylint: enable=cell-var-from-loop
sgd_op = gradient_descent.GradientDescentOptimizer(3.0)
with self.assertRaisesRegexp(ValueError, 'No gradients'):
# var1 has no gradient
sgd_op.minimize(loss, var_list=[var1])
@test_util.run_in_graph_and_eager_modes
def testNoGradientsForAnyVariables_Minimize(self):
for i, dtype in enumerate([dtypes.half, dtypes.float32, dtypes.float64]):
# Note that we name the variables uniquely here since the variables don't
# seem to be getting deleted at the end of the loop.
var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype,
name='a_%d' % i)
var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtype,
name='b_%d' % i)
def loss():
return constant_op.constant(5.0)
sgd_op = gradient_descent.GradientDescentOptimizer(3.0)
with self.assertRaisesRegexp(ValueError,
'No gradients provided for any variable'):
sgd_op.minimize(loss, var_list=[var0, var1])
@test_util.run_in_graph_and_eager_modes
def testNoGradientsForAnyVariables_ApplyGradients(self):
for i, dtype in enumerate([dtypes.half, dtypes.float32, dtypes.float64]):
# Note that we name the variables uniquely here since the variables don't
# seem to be getting deleted at the end of the loop.
var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype,
name='a_%d' % i)
var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtype,
name='b_%d' % i)
sgd_op = gradient_descent.GradientDescentOptimizer(3.0)
with self.assertRaisesRegexp(ValueError,
'No gradients provided for any variable'):
sgd_op.apply_gradients([(None, var0), (None, var1)])
@test_util.run_in_graph_and_eager_modes
def testGradientsAsVariables(self):
for i, dtype in enumerate([dtypes.half, dtypes.float32, dtypes.float64]):
# Note that we name the variables uniquely here since the variables don't
# seem to be getting deleted at the end of the loop.
var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype,
name='a%d' % i)
var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtype,
name='b%d' % i)
def loss():
return 5 * var0 + 3 * var1 # pylint: disable=cell-var-from-loop
sgd_op = gradient_descent.GradientDescentOptimizer(3.0)
grads_and_vars = sgd_op.compute_gradients(loss, [var0, var1])
# Convert gradients to tf.Variables
converted_grads = [
resource_variable_ops.ResourceVariable(array_ops.zeros([2], dtype),
name='c_%d_%d' % (i, j))
for j, gv in enumerate(grads_and_vars)
]
convert_ops = [
state_ops.assign(converted_grads[j], gv[0])
for j, gv in enumerate(grads_and_vars)
]
self.evaluate(variables.global_variables_initializer())
# Run convert_ops to achieve the gradients converting
self.evaluate(convert_ops)
# Fetch params to validate initial values
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
# Run 1 step of sgd through optimizer
converted_grads_and_vars = list(zip(converted_grads, [var0, var1]))
opt_op = sgd_op.apply_gradients(converted_grads_and_vars)
self.evaluate(opt_op)
# Validate updated params
self.assertAllClose([-14., -13.], self.evaluate(var0))
self.assertAllClose([-6., -5.], self.evaluate(var1))
@test_util.run_in_graph_and_eager_modes
def testComputeGradientsWithTensors(self):
x = ops.convert_to_tensor(1.0)
def f():
return x * x
sgd_op = gradient_descent.GradientDescentOptimizer(3.0)
grads_and_vars = sgd_op.compute_gradients(f, [x])
self.assertEqual(1, len(grads_and_vars))
grad, x_as_var = grads_and_vars[0]
self.assertIs(x, x_as_var)
self.assertEqual(2.0, self.evaluate(grad))
with self.assertRaises(NotImplementedError):
sgd_op.apply_gradients(grads_and_vars)
@test_util.run_deprecated_v1
def testTrainOp(self):
with self.cached_session():
var0 = variables.Variable([1.0, 2.0])
var1 = variables.Variable([3.0, 4.0])
cost = 5 * var0 + 3 * var1
global_step = variables.Variable(
array_ops.zeros([], dtypes.int64), name='global_step')
sgd_op = gradient_descent.GradientDescentOptimizer(3.0)
opt_op = sgd_op.minimize(cost, global_step, [var0, var1])
self.assertTrue(opt_op in ops.get_collection(ops.GraphKeys.TRAIN_OP))
@test_util.run_deprecated_v1
def testConstraint(self):
constraint_01 = lambda x: clip_ops.clip_by_value(x, -0.1, 0.)
constraint_0 = lambda x: clip_ops.clip_by_value(x, 0., 1.)
with self.cached_session():
var0 = variables.Variable([1.0, 2.0],
constraint=constraint_01)
var1 = variables.Variable([3.0, 4.0],
constraint=constraint_0)
cost = 5 * var0 + 3 * var1
global_step = variables.Variable(
array_ops.zeros([], dtypes.int64), name='global_step')
sgd_op = gradient_descent.GradientDescentOptimizer(3.0)
opt_op = sgd_op.minimize(cost, global_step, [var0, var1])
variables.global_variables_initializer().run()
# Fetch params to validate initial values
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
# Run 1 step of sgd through optimizer
opt_op.run()
# Validate updated params
self.assertAllClose([-0.1, -0.1], self.evaluate(var0))
self.assertAllClose([0., 0.], self.evaluate(var1))
if __name__ == '__main__':
test.main()