In order to support tests running in eager mode we need to avoid unnecessary use of Sessions in tests. This moves to remove some of the uses of the `run` function in favor of `evaluate`. PiperOrigin-RevId: 223009795
165 lines
6.8 KiB
Python
165 lines
6.8 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests the node stripping tool."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
|
|
from tensorflow.core.framework import graph_pb2
|
|
from tensorflow.python.client import session
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import graph_io
|
|
from tensorflow.python.framework import importer
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.platform import test
|
|
from tensorflow.python.tools import strip_unused_lib
|
|
|
|
|
|
class StripUnusedTest(test_util.TensorFlowTestCase):
|
|
|
|
def testStripUnused(self):
|
|
input_graph_name = "input_graph.pb"
|
|
output_graph_name = "output_graph.pb"
|
|
|
|
# We'll create an input graph that has a single constant containing 1.0,
|
|
# and that then multiplies it by 2.
|
|
with ops.Graph().as_default():
|
|
constant_node = constant_op.constant(1.0, name="constant_node")
|
|
wanted_input_node = math_ops.subtract(constant_node,
|
|
3.0,
|
|
name="wanted_input_node")
|
|
output_node = math_ops.multiply(
|
|
wanted_input_node, 2.0, name="output_node")
|
|
math_ops.add(output_node, 2.0, name="later_node")
|
|
sess = session.Session()
|
|
output = self.evaluate(output_node)
|
|
self.assertNear(-4.0, output, 0.00001)
|
|
graph_io.write_graph(sess.graph, self.get_temp_dir(), input_graph_name)
|
|
|
|
# We save out the graph to disk, and then call the const conversion
|
|
# routine.
|
|
input_graph_path = os.path.join(self.get_temp_dir(), input_graph_name)
|
|
input_binary = False
|
|
output_binary = True
|
|
output_node_names = "output_node"
|
|
output_graph_path = os.path.join(self.get_temp_dir(), output_graph_name)
|
|
|
|
def strip(input_node_names):
|
|
strip_unused_lib.strip_unused_from_files(input_graph_path, input_binary,
|
|
output_graph_path, output_binary,
|
|
input_node_names,
|
|
output_node_names,
|
|
dtypes.float32.as_datatype_enum)
|
|
|
|
with self.assertRaises(KeyError):
|
|
strip("does_not_exist")
|
|
|
|
with self.assertRaises(ValueError):
|
|
strip("wanted_input_node:0")
|
|
|
|
input_node_names = "wanted_input_node"
|
|
strip(input_node_names)
|
|
|
|
# Now we make sure the variable is now a constant, and that the graph still
|
|
# produces the expected result.
|
|
with ops.Graph().as_default():
|
|
output_graph_def = graph_pb2.GraphDef()
|
|
with open(output_graph_path, "rb") as f:
|
|
output_graph_def.ParseFromString(f.read())
|
|
_ = importer.import_graph_def(output_graph_def, name="")
|
|
|
|
self.assertEqual(3, len(output_graph_def.node))
|
|
for node in output_graph_def.node:
|
|
self.assertNotEqual("Add", node.op)
|
|
self.assertNotEqual("Sub", node.op)
|
|
if node.name == input_node_names:
|
|
self.assertTrue("shape" in node.attr)
|
|
|
|
with session.Session() as sess:
|
|
input_node = sess.graph.get_tensor_by_name("wanted_input_node:0")
|
|
output_node = sess.graph.get_tensor_by_name("output_node:0")
|
|
output = sess.run(output_node, feed_dict={input_node: [10.0]})
|
|
self.assertNear(20.0, output, 0.00001)
|
|
|
|
def testStripUnusedMultipleInputs(self):
|
|
input_graph_name = "input_graph.pb"
|
|
output_graph_name = "output_graph.pb"
|
|
|
|
# We'll create an input graph that multiplies two input nodes.
|
|
with ops.Graph().as_default():
|
|
constant_node1 = constant_op.constant(1.0, name="constant_node1")
|
|
constant_node2 = constant_op.constant(2.0, name="constant_node2")
|
|
input_node1 = math_ops.subtract(constant_node1, 3.0, name="input_node1")
|
|
input_node2 = math_ops.subtract(constant_node2, 5.0, name="input_node2")
|
|
output_node = math_ops.multiply(
|
|
input_node1, input_node2, name="output_node")
|
|
math_ops.add(output_node, 2.0, name="later_node")
|
|
sess = session.Session()
|
|
output = self.evaluate(output_node)
|
|
self.assertNear(6.0, output, 0.00001)
|
|
graph_io.write_graph(sess.graph, self.get_temp_dir(), input_graph_name)
|
|
|
|
# We save out the graph to disk, and then call the const conversion
|
|
# routine.
|
|
input_graph_path = os.path.join(self.get_temp_dir(), input_graph_name)
|
|
input_binary = False
|
|
input_node_names = "input_node1,input_node2"
|
|
input_node_types = [
|
|
dtypes.float32.as_datatype_enum, dtypes.float32.as_datatype_enum
|
|
]
|
|
output_binary = True
|
|
output_node_names = "output_node"
|
|
output_graph_path = os.path.join(self.get_temp_dir(), output_graph_name)
|
|
|
|
strip_unused_lib.strip_unused_from_files(input_graph_path, input_binary,
|
|
output_graph_path, output_binary,
|
|
input_node_names,
|
|
output_node_names,
|
|
input_node_types)
|
|
|
|
# Now we make sure the variable is now a constant, and that the graph still
|
|
# produces the expected result.
|
|
with ops.Graph().as_default():
|
|
output_graph_def = graph_pb2.GraphDef()
|
|
with open(output_graph_path, "rb") as f:
|
|
output_graph_def.ParseFromString(f.read())
|
|
_ = importer.import_graph_def(output_graph_def, name="")
|
|
|
|
self.assertEqual(3, len(output_graph_def.node))
|
|
for node in output_graph_def.node:
|
|
self.assertNotEqual("Add", node.op)
|
|
self.assertNotEqual("Sub", node.op)
|
|
if node.name == input_node_names:
|
|
self.assertTrue("shape" in node.attr)
|
|
|
|
with session.Session() as sess:
|
|
input_node1 = sess.graph.get_tensor_by_name("input_node1:0")
|
|
input_node2 = sess.graph.get_tensor_by_name("input_node2:0")
|
|
output_node = sess.graph.get_tensor_by_name("output_node:0")
|
|
output = sess.run(output_node,
|
|
feed_dict={input_node1: [10.0],
|
|
input_node2: [-5.0]})
|
|
self.assertNear(-50.0, output, 0.00001)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|