560 lines
17 KiB
Python
560 lines
17 KiB
Python
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Module that encodes (decodes) nested structures into (from) protos.
|
|
|
|
The intended use is to serialize everything needed to restore a `Function` that
|
|
was saved into a SavedModel. This may include concrete function inputs and
|
|
outputs, signatures, function specs, etc.
|
|
|
|
Example use:
|
|
coder = nested_structure_coder.StructureCoder()
|
|
# Encode into proto.
|
|
signature_proto = coder.encode_structure(function.input_signature)
|
|
# Decode into a Python object.
|
|
restored_signature = coder.decode_proto(signature_proto)
|
|
"""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import collections
|
|
import functools
|
|
|
|
import six
|
|
|
|
from tensorflow.core.protobuf import struct_pb2
|
|
from tensorflow.python.data.ops import dataset_ops
|
|
from tensorflow.python.data.ops import iterator_ops
|
|
from tensorflow.python.data.ops import optional_ops
|
|
from tensorflow.python.distribute import values
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import indexed_slices
|
|
from tensorflow.python.framework import sparse_tensor
|
|
from tensorflow.python.framework import tensor_shape
|
|
from tensorflow.python.framework import tensor_spec
|
|
from tensorflow.python.framework import tensor_util
|
|
from tensorflow.python.ops import resource_variable_ops
|
|
from tensorflow.python.ops import tensor_array_ops
|
|
from tensorflow.python.ops.ragged import ragged_tensor
|
|
from tensorflow.python.ops.ragged import row_partition
|
|
from tensorflow.python.util import compat
|
|
from tensorflow.python.util.compat import collections_abc
|
|
|
|
|
|
class NotEncodableError(Exception):
|
|
"""Error raised when a coder cannot encode an object."""
|
|
|
|
|
|
class StructureCoder(object):
|
|
"""Encoder and decoder for nested structures into protos."""
|
|
|
|
_codecs = []
|
|
|
|
@classmethod
|
|
def register_codec(cls, x):
|
|
cls._codecs.append(x)
|
|
|
|
@classmethod
|
|
def _get_encoders(cls):
|
|
return [(c.can_encode, c.do_encode) for c in cls._codecs]
|
|
|
|
@classmethod
|
|
def _get_decoders(cls):
|
|
return [(c.can_decode, c.do_decode) for c in cls._codecs]
|
|
|
|
def _map_structure(self, pyobj, coders):
|
|
for can, do in coders:
|
|
if can(pyobj):
|
|
recursion_fn = functools.partial(self._map_structure, coders=coders)
|
|
return do(pyobj, recursion_fn)
|
|
raise NotEncodableError(
|
|
"No encoder for object [%s] of type [%s]." % (str(pyobj), type(pyobj)))
|
|
|
|
def encode_structure(self, nested_structure):
|
|
"""Encodes nested structures composed of encodable types into a proto.
|
|
|
|
Args:
|
|
nested_structure: Structure to encode.
|
|
|
|
Returns:
|
|
Encoded proto.
|
|
|
|
Raises:
|
|
NotEncodableError: For values for which there are no encoders.
|
|
"""
|
|
return self._map_structure(nested_structure, self._get_encoders())
|
|
|
|
def can_encode(self, nested_structure):
|
|
"""Determines whether a nested structure can be encoded into a proto.
|
|
|
|
Args:
|
|
nested_structure: Structure to encode.
|
|
|
|
Returns:
|
|
True if the nested structured can be encoded.
|
|
"""
|
|
try:
|
|
self.encode_structure(nested_structure)
|
|
except NotEncodableError:
|
|
return False
|
|
return True
|
|
|
|
def decode_proto(self, proto):
|
|
"""Decodes proto representing a nested structure.
|
|
|
|
Args:
|
|
proto: Proto to decode.
|
|
|
|
Returns:
|
|
Decoded structure.
|
|
|
|
Raises:
|
|
NotEncodableError: For values for which there are no encoders.
|
|
"""
|
|
return self._map_structure(proto, self._get_decoders())
|
|
|
|
|
|
class _ListCodec(object):
|
|
"""Codec for lists."""
|
|
|
|
def can_encode(self, pyobj):
|
|
return isinstance(pyobj, list)
|
|
|
|
def do_encode(self, list_value, encode_fn):
|
|
encoded_list = struct_pb2.StructuredValue()
|
|
encoded_list.list_value.CopyFrom(struct_pb2.ListValue())
|
|
for element in list_value:
|
|
encoded_list.list_value.values.add().CopyFrom(encode_fn(element))
|
|
return encoded_list
|
|
|
|
def can_decode(self, value):
|
|
return value.HasField("list_value")
|
|
|
|
def do_decode(self, value, decode_fn):
|
|
return [decode_fn(element) for element in value.list_value.values]
|
|
|
|
|
|
StructureCoder.register_codec(_ListCodec())
|
|
|
|
|
|
def _is_tuple(obj):
|
|
return not _is_named_tuple(obj) and isinstance(obj, tuple)
|
|
|
|
|
|
def _is_named_tuple(instance):
|
|
"""Returns True iff `instance` is a `namedtuple`.
|
|
|
|
Args:
|
|
instance: An instance of a Python object.
|
|
|
|
Returns:
|
|
True if `instance` is a `namedtuple`.
|
|
"""
|
|
if not isinstance(instance, tuple):
|
|
return False
|
|
return (hasattr(instance, "_fields") and
|
|
isinstance(instance._fields, collections_abc.Sequence) and
|
|
all(isinstance(f, six.string_types) for f in instance._fields))
|
|
|
|
|
|
class _TupleCodec(object):
|
|
"""Codec for tuples."""
|
|
|
|
def can_encode(self, pyobj):
|
|
return _is_tuple(pyobj)
|
|
|
|
def do_encode(self, tuple_value, encode_fn):
|
|
encoded_tuple = struct_pb2.StructuredValue()
|
|
encoded_tuple.tuple_value.CopyFrom(struct_pb2.TupleValue())
|
|
for element in tuple_value:
|
|
encoded_tuple.tuple_value.values.add().CopyFrom(encode_fn(element))
|
|
return encoded_tuple
|
|
|
|
def can_decode(self, value):
|
|
return value.HasField("tuple_value")
|
|
|
|
def do_decode(self, value, decode_fn):
|
|
return tuple(decode_fn(element) for element in value.tuple_value.values)
|
|
|
|
|
|
StructureCoder.register_codec(_TupleCodec())
|
|
|
|
|
|
class _DictCodec(object):
|
|
"""Codec for dicts."""
|
|
|
|
def can_encode(self, pyobj):
|
|
return isinstance(pyobj, dict)
|
|
|
|
def do_encode(self, dict_value, encode_fn):
|
|
encoded_dict = struct_pb2.StructuredValue()
|
|
encoded_dict.dict_value.CopyFrom(struct_pb2.DictValue())
|
|
for key, value in dict_value.items():
|
|
encoded_dict.dict_value.fields[key].CopyFrom(encode_fn(value))
|
|
return encoded_dict
|
|
|
|
def can_decode(self, value):
|
|
return value.HasField("dict_value")
|
|
|
|
def do_decode(self, value, decode_fn):
|
|
return {key: decode_fn(val) for key, val in value.dict_value.fields.items()}
|
|
|
|
|
|
StructureCoder.register_codec(_DictCodec())
|
|
|
|
|
|
class _NamedTupleCodec(object):
|
|
"""Codec for namedtuples.
|
|
|
|
Encoding and decoding a namedtuple reconstructs a namedtuple with a different
|
|
actual Python type, but with the same `typename` and `fields`.
|
|
"""
|
|
|
|
def can_encode(self, pyobj):
|
|
return _is_named_tuple(pyobj)
|
|
|
|
def do_encode(self, named_tuple_value, encode_fn):
|
|
encoded_named_tuple = struct_pb2.StructuredValue()
|
|
encoded_named_tuple.named_tuple_value.CopyFrom(struct_pb2.NamedTupleValue())
|
|
encoded_named_tuple.named_tuple_value.name = \
|
|
named_tuple_value.__class__.__name__
|
|
for key in named_tuple_value._fields:
|
|
pair = encoded_named_tuple.named_tuple_value.values.add()
|
|
pair.key = key
|
|
pair.value.CopyFrom(encode_fn(named_tuple_value._asdict()[key]))
|
|
return encoded_named_tuple
|
|
|
|
def can_decode(self, value):
|
|
return value.HasField("named_tuple_value")
|
|
|
|
def do_decode(self, value, decode_fn):
|
|
key_value_pairs = value.named_tuple_value.values
|
|
items = [(pair.key, decode_fn(pair.value)) for pair in key_value_pairs]
|
|
named_tuple_type = collections.namedtuple(value.named_tuple_value.name,
|
|
[item[0] for item in items])
|
|
return named_tuple_type(**dict(items))
|
|
|
|
|
|
StructureCoder.register_codec(_NamedTupleCodec())
|
|
|
|
|
|
class _Float64Codec(object):
|
|
"""Codec for floats."""
|
|
|
|
def can_encode(self, pyobj):
|
|
return isinstance(pyobj, float)
|
|
|
|
def do_encode(self, float64_value, encode_fn):
|
|
del encode_fn
|
|
value = struct_pb2.StructuredValue()
|
|
value.float64_value = float64_value
|
|
return value
|
|
|
|
def can_decode(self, value):
|
|
return value.HasField("float64_value")
|
|
|
|
def do_decode(self, value, decode_fn):
|
|
del decode_fn
|
|
return value.float64_value
|
|
|
|
|
|
StructureCoder.register_codec(_Float64Codec())
|
|
|
|
|
|
class _Int64Codec(object):
|
|
"""Codec for Python integers (limited to 64 bit values)."""
|
|
|
|
def can_encode(self, pyobj):
|
|
return not isinstance(pyobj, bool) and isinstance(pyobj, int)
|
|
|
|
def do_encode(self, int_value, encode_fn):
|
|
del encode_fn
|
|
value = struct_pb2.StructuredValue()
|
|
value.int64_value = int_value
|
|
return value
|
|
|
|
def can_decode(self, value):
|
|
return value.HasField("int64_value")
|
|
|
|
def do_decode(self, value, decode_fn):
|
|
del decode_fn
|
|
return int(value.int64_value)
|
|
|
|
|
|
StructureCoder.register_codec(_Int64Codec())
|
|
|
|
|
|
class _StringCodec(object):
|
|
"""Codec for strings.
|
|
|
|
See StructuredValue.string_value in proto/struct.proto for more detailed
|
|
explanation.
|
|
"""
|
|
|
|
def can_encode(self, pyobj):
|
|
return isinstance(pyobj, str)
|
|
|
|
def do_encode(self, string_value, encode_fn):
|
|
del encode_fn
|
|
value = struct_pb2.StructuredValue()
|
|
value.string_value = string_value
|
|
return value
|
|
|
|
def can_decode(self, value):
|
|
return value.HasField("string_value")
|
|
|
|
def do_decode(self, value, decode_fn):
|
|
del decode_fn
|
|
return compat.as_str(value.string_value)
|
|
|
|
|
|
StructureCoder.register_codec(_StringCodec())
|
|
|
|
|
|
class _NoneCodec(object):
|
|
"""Codec for None."""
|
|
|
|
def can_encode(self, pyobj):
|
|
return pyobj is None
|
|
|
|
def do_encode(self, none_value, encode_fn):
|
|
del encode_fn, none_value
|
|
value = struct_pb2.StructuredValue()
|
|
value.none_value.CopyFrom(struct_pb2.NoneValue())
|
|
return value
|
|
|
|
def can_decode(self, value):
|
|
return value.HasField("none_value")
|
|
|
|
def do_decode(self, value, decode_fn):
|
|
del decode_fn, value
|
|
return None
|
|
|
|
|
|
StructureCoder.register_codec(_NoneCodec())
|
|
|
|
|
|
class _BoolCodec(object):
|
|
"""Codec for booleans."""
|
|
|
|
def can_encode(self, pyobj):
|
|
return isinstance(pyobj, bool)
|
|
|
|
def do_encode(self, bool_value, encode_fn):
|
|
del encode_fn
|
|
value = struct_pb2.StructuredValue()
|
|
value.bool_value = bool_value
|
|
return value
|
|
|
|
def can_decode(self, value):
|
|
return value.HasField("bool_value")
|
|
|
|
def do_decode(self, value, decode_fn):
|
|
del decode_fn
|
|
return value.bool_value
|
|
|
|
|
|
StructureCoder.register_codec(_BoolCodec())
|
|
|
|
|
|
class _TensorShapeCodec(object):
|
|
"""Codec for `TensorShape`."""
|
|
|
|
def can_encode(self, pyobj):
|
|
return isinstance(pyobj, tensor_shape.TensorShape)
|
|
|
|
def do_encode(self, tensor_shape_value, encode_fn):
|
|
del encode_fn
|
|
encoded_tensor_shape = struct_pb2.StructuredValue()
|
|
encoded_tensor_shape.tensor_shape_value.CopyFrom(
|
|
tensor_shape_value.as_proto())
|
|
return encoded_tensor_shape
|
|
|
|
def can_decode(self, value):
|
|
return value.HasField("tensor_shape_value")
|
|
|
|
def do_decode(self, value, decode_fn):
|
|
del decode_fn
|
|
return tensor_shape.TensorShape(value.tensor_shape_value)
|
|
|
|
|
|
StructureCoder.register_codec(_TensorShapeCodec())
|
|
|
|
|
|
class _TensorTypeCodec(object):
|
|
"""Codec for `TensorType`."""
|
|
|
|
def can_encode(self, pyobj):
|
|
return isinstance(pyobj, dtypes.DType)
|
|
|
|
def do_encode(self, tensor_dtype_value, encode_fn):
|
|
del encode_fn
|
|
encoded_tensor_type = struct_pb2.StructuredValue()
|
|
encoded_tensor_type.tensor_dtype_value = tensor_dtype_value.as_datatype_enum
|
|
return encoded_tensor_type
|
|
|
|
def can_decode(self, value):
|
|
return value.HasField("tensor_dtype_value")
|
|
|
|
def do_decode(self, value, decode_fn):
|
|
del decode_fn
|
|
return dtypes.DType(value.tensor_dtype_value)
|
|
|
|
|
|
StructureCoder.register_codec(_TensorTypeCodec())
|
|
|
|
|
|
class _TensorSpecCodec(object):
|
|
"""Codec for `TensorSpec`."""
|
|
|
|
def can_encode(self, pyobj):
|
|
# BoundedTensorSpec has its own decoder.
|
|
return (isinstance(pyobj, tensor_spec.TensorSpec) and
|
|
not isinstance(pyobj, tensor_spec.BoundedTensorSpec))
|
|
|
|
def do_encode(self, tensor_spec_value, encode_fn):
|
|
encoded_tensor_spec = struct_pb2.StructuredValue()
|
|
encoded_tensor_spec.tensor_spec_value.CopyFrom(
|
|
struct_pb2.TensorSpecProto(
|
|
shape=encode_fn(tensor_spec_value.shape).tensor_shape_value,
|
|
dtype=encode_fn(tensor_spec_value.dtype).tensor_dtype_value,
|
|
name=tensor_spec_value.name))
|
|
return encoded_tensor_spec
|
|
|
|
def can_decode(self, value):
|
|
return value.HasField("tensor_spec_value")
|
|
|
|
def do_decode(self, value, decode_fn):
|
|
name = value.tensor_spec_value.name
|
|
return tensor_spec.TensorSpec(
|
|
shape=decode_fn(
|
|
struct_pb2.StructuredValue(
|
|
tensor_shape_value=value.tensor_spec_value.shape)),
|
|
dtype=decode_fn(
|
|
struct_pb2.StructuredValue(
|
|
tensor_dtype_value=value.tensor_spec_value.dtype)),
|
|
name=(name if name else None))
|
|
|
|
|
|
StructureCoder.register_codec(_TensorSpecCodec())
|
|
|
|
|
|
class _BoundedTensorSpecCodec(object):
|
|
"""Codec for `BoundedTensorSpec`."""
|
|
|
|
def can_encode(self, pyobj):
|
|
return isinstance(pyobj, tensor_spec.BoundedTensorSpec)
|
|
|
|
def do_encode(self, bounded_tensor_spec_value, encode_fn):
|
|
"""Returns an encoded proto for the given `tf.BoundedTensorSpec`."""
|
|
encoded_bounded_tensor_spec = struct_pb2.StructuredValue()
|
|
encoded_bounded_tensor_spec.bounded_tensor_spec_value.CopyFrom(
|
|
struct_pb2.BoundedTensorSpecProto(
|
|
shape=encode_fn(bounded_tensor_spec_value.shape).tensor_shape_value,
|
|
dtype=encode_fn(bounded_tensor_spec_value.dtype).tensor_dtype_value,
|
|
name=bounded_tensor_spec_value.name,
|
|
minimum=tensor_util.make_tensor_proto(
|
|
bounded_tensor_spec_value.minimum),
|
|
maximum=tensor_util.make_tensor_proto(
|
|
bounded_tensor_spec_value.maximum)))
|
|
return encoded_bounded_tensor_spec
|
|
|
|
def can_decode(self, value):
|
|
return value.HasField("bounded_tensor_spec_value")
|
|
|
|
def do_decode(self, value, decode_fn):
|
|
btsv = value.bounded_tensor_spec_value
|
|
name = btsv.name
|
|
return tensor_spec.BoundedTensorSpec(
|
|
shape=decode_fn(
|
|
struct_pb2.StructuredValue(tensor_shape_value=btsv.shape)),
|
|
dtype=decode_fn(
|
|
struct_pb2.StructuredValue(tensor_dtype_value=btsv.dtype)),
|
|
minimum=tensor_util.MakeNdarray(btsv.minimum),
|
|
maximum=tensor_util.MakeNdarray(btsv.maximum),
|
|
name=(name if name else None))
|
|
|
|
|
|
StructureCoder.register_codec(_BoundedTensorSpecCodec())
|
|
|
|
|
|
class _TypeSpecCodec(object):
|
|
"""Codec for `tf.TypeSpec`."""
|
|
|
|
# Mapping from enum value to type (TypeSpec subclass).
|
|
TYPE_SPEC_CLASS_FROM_PROTO = {
|
|
struct_pb2.TypeSpecProto.SPARSE_TENSOR_SPEC:
|
|
sparse_tensor.SparseTensorSpec,
|
|
struct_pb2.TypeSpecProto.INDEXED_SLICES_SPEC:
|
|
indexed_slices.IndexedSlicesSpec,
|
|
struct_pb2.TypeSpecProto.RAGGED_TENSOR_SPEC:
|
|
ragged_tensor.RaggedTensorSpec,
|
|
struct_pb2.TypeSpecProto.TENSOR_ARRAY_SPEC:
|
|
tensor_array_ops.TensorArraySpec,
|
|
struct_pb2.TypeSpecProto.DATA_DATASET_SPEC:
|
|
dataset_ops.DatasetSpec,
|
|
struct_pb2.TypeSpecProto.DATA_ITERATOR_SPEC:
|
|
iterator_ops.IteratorSpec,
|
|
struct_pb2.TypeSpecProto.OPTIONAL_SPEC:
|
|
optional_ops.OptionalSpec,
|
|
struct_pb2.TypeSpecProto.PER_REPLICA_SPEC:
|
|
values.PerReplicaSpec,
|
|
struct_pb2.TypeSpecProto.VARIABLE_SPEC:
|
|
resource_variable_ops.VariableSpec,
|
|
struct_pb2.TypeSpecProto.ROW_PARTITION_SPEC:
|
|
row_partition.RowPartitionSpec,
|
|
}
|
|
|
|
# Mapping from type (TypeSpec subclass) to enum value.
|
|
TYPE_SPEC_CLASS_TO_PROTO = dict(
|
|
(cls, enum) for (enum, cls) in TYPE_SPEC_CLASS_FROM_PROTO.items())
|
|
|
|
def can_encode(self, pyobj):
|
|
# pylint: disable=unidiomatic-typecheck
|
|
return type(pyobj) in self.TYPE_SPEC_CLASS_TO_PROTO
|
|
|
|
def do_encode(self, type_spec_value, encode_fn):
|
|
"""Returns an encoded proto for the given `tf.TypeSpec`."""
|
|
type_spec_class = self.TYPE_SPEC_CLASS_TO_PROTO[type(type_spec_value)]
|
|
type_state = type_spec_value._serialize() # pylint: disable=protected-access
|
|
encoded_type_spec = struct_pb2.StructuredValue()
|
|
encoded_type_spec.type_spec_value.CopyFrom(
|
|
struct_pb2.TypeSpecProto(
|
|
type_spec_class=type_spec_class,
|
|
type_state=encode_fn(type_state),
|
|
type_spec_class_name=type(type_spec_value).__name__))
|
|
return encoded_type_spec
|
|
|
|
def can_decode(self, value):
|
|
return value.HasField("type_spec_value")
|
|
|
|
def do_decode(self, value, decode_fn):
|
|
"""Returns the `tf.TypeSpec` encoded by the proto `value`."""
|
|
type_spec_proto = value.type_spec_value
|
|
type_spec_class_enum = type_spec_proto.type_spec_class
|
|
if type_spec_class_enum not in self.TYPE_SPEC_CLASS_FROM_PROTO:
|
|
raise ValueError(
|
|
"The type '%s' is not supported by this version of TensorFlow. "
|
|
"(The object you are loading must have been created with a newer "
|
|
"version of TensorFlow.)" % type_spec_proto.type_spec_class_name)
|
|
|
|
type_spec_class = self.TYPE_SPEC_CLASS_FROM_PROTO[type_spec_class_enum]
|
|
# pylint: disable=protected-access
|
|
return type_spec_class._deserialize(decode_fn(type_spec_proto.type_state))
|
|
|
|
|
|
StructureCoder.register_codec(_TypeSpecCodec())
|