Skip individual test cases or entire suites that are not running in v1. Also replace some @run_deprecated_v1 annotations since simply running the test in graph mode was not enough. PiperOrigin-RevId: 224604547
275 lines
11 KiB
Python
275 lines
11 KiB
Python
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for SavedModelLoader class."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import shutil
|
|
|
|
from absl.testing import parameterized
|
|
|
|
from tensorflow.python.client import session
|
|
from tensorflow.python.framework import errors
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.ops import control_flow_ops
|
|
from tensorflow.python.ops import state_ops
|
|
from tensorflow.python.ops import variables
|
|
from tensorflow.python.platform import test
|
|
from tensorflow.python.saved_model import builder as saved_model_builder
|
|
from tensorflow.python.saved_model import loader_impl
|
|
from tensorflow.python.saved_model import signature_def_utils
|
|
from tensorflow.python.saved_model import utils
|
|
from tensorflow.python.training import saver as tf_saver
|
|
|
|
|
|
def _get_export_dir(label):
|
|
return os.path.join(test.get_temp_dir(), label)
|
|
|
|
SIMPLE_ADD_SAVED_MODEL = _get_export_dir("simple_add_saved_model")
|
|
SAVED_MODEL_WITH_MAIN_OP = _get_export_dir("saved_model_with_main_op")
|
|
|
|
|
|
def build_graph_helper():
|
|
g = ops.Graph()
|
|
with g.as_default():
|
|
x = variables.VariableV1(5, name="x")
|
|
y = variables.VariableV1(11, name="y")
|
|
z = x + y
|
|
|
|
foo_sig_def = signature_def_utils.build_signature_def({
|
|
"foo_input": utils.build_tensor_info(x)
|
|
}, {"foo_output": utils.build_tensor_info(z)})
|
|
bar_sig_def = signature_def_utils.build_signature_def({
|
|
"bar_x": utils.build_tensor_info(x),
|
|
"bar_y": utils.build_tensor_info(y)
|
|
}, {"bar_z": utils.build_tensor_info(z)})
|
|
return g, {"foo": foo_sig_def, "bar": bar_sig_def}, y
|
|
|
|
|
|
@parameterized.parameters((saved_model_builder.SavedModelBuilder,),
|
|
(saved_model_builder._SavedModelBuilder,))
|
|
class SavedModelLoaderTest(test.TestCase, parameterized.TestCase):
|
|
|
|
def export_simple_graph(self, builder_cls):
|
|
g, sig_def_map, _ = build_graph_helper()
|
|
with session.Session(graph=g) as sess:
|
|
self.evaluate(variables.global_variables_initializer())
|
|
builder = builder_cls(SIMPLE_ADD_SAVED_MODEL)
|
|
builder.add_meta_graph_and_variables(sess, ["foo_graph"], sig_def_map)
|
|
builder.save()
|
|
|
|
def export_graph_with_main_op(self, builder_cls):
|
|
g, sig_def_map, y = build_graph_helper()
|
|
with session.Session(graph=g) as sess:
|
|
self.evaluate(variables.global_variables_initializer())
|
|
assign_op = control_flow_ops.group(state_ops.assign(y, 7))
|
|
|
|
builder = builder_cls(SAVED_MODEL_WITH_MAIN_OP)
|
|
|
|
if builder_cls == saved_model_builder._SavedModelBuilder:
|
|
builder.add_meta_graph_and_variables(
|
|
sess, ["foo_graph"], sig_def_map, init_op=assign_op)
|
|
else:
|
|
builder.add_meta_graph_and_variables(
|
|
sess, ["foo_graph"], sig_def_map, main_op=assign_op)
|
|
builder.save()
|
|
|
|
def tearDown(self):
|
|
super(SavedModelLoaderTest, self).tearDown()
|
|
shutil.rmtree(test.get_temp_dir(), ignore_errors=True)
|
|
|
|
@test_util.run_v1_only("b/120545219")
|
|
def test_load_function(self, builder_cls):
|
|
self.export_simple_graph(builder_cls)
|
|
loader = loader_impl.SavedModelLoader(SIMPLE_ADD_SAVED_MODEL)
|
|
with self.session(graph=ops.Graph()) as sess:
|
|
loader.load(sess, ["foo_graph"])
|
|
self.assertEqual(5, sess.graph.get_tensor_by_name("x:0").eval())
|
|
self.assertEqual(11, sess.graph.get_tensor_by_name("y:0").eval())
|
|
|
|
self.export_graph_with_main_op(builder_cls)
|
|
loader2 = loader_impl.SavedModelLoader(SAVED_MODEL_WITH_MAIN_OP)
|
|
with self.session(graph=ops.Graph()) as sess:
|
|
loader2.load(sess, ["foo_graph"])
|
|
self.assertEqual(5, sess.graph.get_tensor_by_name("x:0").eval())
|
|
self.assertEqual(7, sess.graph.get_tensor_by_name("y:0").eval())
|
|
|
|
@test_util.run_v1_only("b/120545219")
|
|
def test_load_graph(self, builder_cls):
|
|
self.export_simple_graph(builder_cls)
|
|
loader = loader_impl.SavedModelLoader(SIMPLE_ADD_SAVED_MODEL)
|
|
graph = ops.Graph()
|
|
loader.load_graph(graph, ["foo_graph"])
|
|
|
|
x = graph.get_tensor_by_name("x:0")
|
|
y = graph.get_tensor_by_name("y:0")
|
|
|
|
with self.assertRaises(KeyError):
|
|
graph.get_tensor_by_name("z:0")
|
|
|
|
with self.session(graph=graph):
|
|
# Check that x and y are not initialized
|
|
with self.assertRaises(errors.FailedPreconditionError):
|
|
self.evaluate(x)
|
|
with self.assertRaises(errors.FailedPreconditionError):
|
|
self.evaluate(y)
|
|
|
|
@test_util.run_v1_only("b/120545219")
|
|
def test_load_with_import_scope(self, builder_cls):
|
|
self.export_graph_with_main_op(builder_cls)
|
|
loader = loader_impl.SavedModelLoader(SAVED_MODEL_WITH_MAIN_OP)
|
|
with self.session(graph=ops.Graph()) as sess:
|
|
saver, _ = loader.load_graph(
|
|
sess.graph, ["foo_graph"], import_scope="baz")
|
|
|
|
# The default saver should not work when the import scope is set.
|
|
with self.assertRaises(errors.NotFoundError):
|
|
loader.restore_variables(sess, tf_saver.Saver())
|
|
|
|
loader.restore_variables(sess, saver)
|
|
|
|
if builder_cls == saved_model_builder._SavedModelBuilder:
|
|
with self.assertRaises(errors.NotFoundError):
|
|
loader.run_init_ops(sess, ["foo_graph"])
|
|
loader.run_init_ops(sess, ["foo_graph"], import_scope="baz")
|
|
else:
|
|
loader.run_init_ops(sess, ["foo_graph"])
|
|
|
|
self.assertEqual(5, sess.graph.get_tensor_by_name("baz/x:0").eval())
|
|
self.assertEqual(7, sess.graph.get_tensor_by_name("baz/y:0").eval())
|
|
|
|
# Test combined load function.
|
|
loader = loader_impl.SavedModelLoader(SAVED_MODEL_WITH_MAIN_OP)
|
|
with self.session(graph=ops.Graph()) as sess:
|
|
loader.load(sess, ["foo_graph"], import_scope="baa")
|
|
self.assertEqual(5, sess.graph.get_tensor_by_name("baa/x:0").eval())
|
|
self.assertEqual(7, sess.graph.get_tensor_by_name("baa/y:0").eval())
|
|
|
|
@test_util.run_deprecated_v1
|
|
def test_restore_variables(self, builder_cls):
|
|
self.export_graph_with_main_op(builder_cls)
|
|
loader = loader_impl.SavedModelLoader(SAVED_MODEL_WITH_MAIN_OP)
|
|
with self.session(graph=ops.Graph()) as sess:
|
|
x = variables.VariableV1(0, name="x")
|
|
y = variables.VariableV1(0, name="y")
|
|
z = x * y
|
|
|
|
self.evaluate(variables.global_variables_initializer())
|
|
|
|
# There are variables to restore, so a saver must be created.
|
|
with self.assertRaises(ValueError):
|
|
loader.restore_variables(sess, None)
|
|
|
|
loader.restore_variables(sess, tf_saver.Saver())
|
|
self.assertEqual(55, self.evaluate(z))
|
|
|
|
@test_util.run_v1_only("b/120545219")
|
|
def test_run_init_op(self, builder_cls):
|
|
self.export_graph_with_main_op(builder_cls)
|
|
loader = loader_impl.SavedModelLoader(SAVED_MODEL_WITH_MAIN_OP)
|
|
graph = ops.Graph()
|
|
saver, _ = loader.load_graph(graph, ["foo_graph"])
|
|
with self.session(graph=graph) as sess:
|
|
loader.restore_variables(sess, saver)
|
|
self.assertEqual(5, sess.graph.get_tensor_by_name("x:0").eval())
|
|
self.assertEqual(11, sess.graph.get_tensor_by_name("y:0").eval())
|
|
|
|
loader.run_init_ops(sess, ["foo_graph"])
|
|
self.assertEqual(5, sess.graph.get_tensor_by_name("x:0").eval())
|
|
self.assertEqual(7, sess.graph.get_tensor_by_name("y:0").eval())
|
|
|
|
def test_parse_saved_model(self, builder_cls):
|
|
self.export_simple_graph(builder_cls)
|
|
loader = loader_impl.SavedModelLoader(SIMPLE_ADD_SAVED_MODEL)
|
|
meta_graph = loader.get_meta_graph_def_from_tags(["foo_graph"])
|
|
self.assertIsNotNone(meta_graph)
|
|
self.assertIn("foo", meta_graph.signature_def)
|
|
self.assertIn("bar", meta_graph.signature_def)
|
|
|
|
def test_load_invalid_meta_graph(self, builder_cls):
|
|
self.export_simple_graph(builder_cls)
|
|
loader = loader_impl.SavedModelLoader(SIMPLE_ADD_SAVED_MODEL)
|
|
with self.assertRaises(RuntimeError):
|
|
loader.get_meta_graph_def_from_tags([])
|
|
with self.assertRaises(RuntimeError):
|
|
loader.get_meta_graph_def_from_tags([""])
|
|
with self.assertRaises(RuntimeError):
|
|
loader.get_meta_graph_def_from_tags(["not_a_graph"])
|
|
|
|
@test_util.run_v1_only("b/120545219")
|
|
def test_load_saved_model_with_no_variables(self, builder_cls):
|
|
"""Test that SavedModel runs saver when there appear to be no variables.
|
|
|
|
When no variables are detected, this may mean that the variables were saved
|
|
to different collections, or the collections weren't saved to the
|
|
SavedModel. If the SavedModel MetaGraphDef contains a saver, it should still
|
|
run in either of these cases.
|
|
|
|
Args:
|
|
builder_cls: SavedModelBuilder or _SavedModelBuilder class
|
|
"""
|
|
path = _get_export_dir("no_variable_saved_model")
|
|
with session.Session(graph=ops.Graph()) as sess:
|
|
x = variables.VariableV1(
|
|
5, name="x", collections=["not_global_variable"])
|
|
y = variables.VariableV1(
|
|
11, name="y", collections=["not_global_variable"])
|
|
self.assertFalse(variables._all_saveable_objects())
|
|
z = x + y
|
|
self.evaluate(variables.variables_initializer([x, y]))
|
|
|
|
foo_sig_def = signature_def_utils.build_signature_def(
|
|
{"foo_input": utils.build_tensor_info(x)},
|
|
{"foo_output": utils.build_tensor_info(z)})
|
|
|
|
builder = saved_model_builder.SavedModelBuilder(path)
|
|
builder.add_meta_graph_and_variables(
|
|
sess, ["foo_graph"], {"foo": foo_sig_def},
|
|
saver=tf_saver.Saver([x, y]))
|
|
builder.save()
|
|
|
|
loader = loader_impl.SavedModelLoader(path)
|
|
with self.session(graph=ops.Graph()) as sess:
|
|
saver, _ = loader.load_graph(sess.graph, ["foo_graph"])
|
|
self.assertFalse(variables._all_saveable_objects())
|
|
self.assertIsNotNone(saver)
|
|
|
|
with self.session(graph=ops.Graph()) as sess:
|
|
loader.load(sess, ["foo_graph"])
|
|
self.assertEqual(5, sess.graph.get_tensor_by_name("x:0").eval())
|
|
self.assertEqual(11, sess.graph.get_tensor_by_name("y:0").eval())
|
|
|
|
def test_load_saved_model_graph_with_return_elements(self, builder_cls):
|
|
"""Ensure that the correct elements are returned."""
|
|
self.export_simple_graph(builder_cls)
|
|
loader = loader_impl.SavedModelLoader(SIMPLE_ADD_SAVED_MODEL)
|
|
graph = ops.Graph()
|
|
_, ret = loader.load_graph(graph, ["foo_graph"],
|
|
return_elements=["y:0", "x:0"])
|
|
|
|
self.assertEqual(graph.get_tensor_by_name("y:0"), ret[0])
|
|
self.assertEqual(graph.get_tensor_by_name("x:0"), ret[1])
|
|
|
|
with self.assertRaisesRegexp(ValueError, "not found in graph"):
|
|
loader.load_graph(graph, ["foo_graph"], return_elements=["z:0"])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|