STT-tensorflow/tensorflow/python/ops/quantized_conv_ops_test.py
Gaurav Jain b17d53c0cd Replace a few calls of Session run with evaluate
In order to support tests running in eager mode we need to avoid
unnecessary use of Sessions in tests. This moves to remove some
of the uses of the `run` function in favor of `evaluate`.

PiperOrigin-RevId: 223009795
2018-11-27 10:09:00 -08:00

206 lines
7.3 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functional tests for quantized convolutional operations."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import nn_ops
from tensorflow.python.platform import test
class Conv2DTest(test.TestCase):
def __init__(self, method_name="runTest"):
super(Conv2DTest, self).__init__(method_name)
def _VerifyValues(self, tensor_in_sizes, filter_in_sizes, stride, padding,
expected):
"""Verifies the output values of the convolution function.
Args:
tensor_in_sizes: Input tensor dimensions in
[batch, input_rows, input_cols, input_depth].
filter_in_sizes: Filter tensor dimensions in
[kernel_rows, kernel_cols, input_depth, output_depth].
stride: Stride.
padding: Padding type.
expected: An array containing the expected operation outputs.
"""
total_size_1 = 1
total_size_2 = 1
for s in tensor_in_sizes:
total_size_1 *= s
for s in filter_in_sizes:
total_size_2 *= s
# Initializes the input tensor with array containing incrementing
# numbers from 1.
x1 = np.array([f for f in range(1, total_size_1 + 1)])
x1 = x1.astype(np.uint8).reshape(tensor_in_sizes)
x1_min = 0.0
x1_max = 255.0
x2 = np.array([f for f in range(1, total_size_2 + 1)]).astype(np.uint8)
x2 = x2.astype(np.uint8).reshape(filter_in_sizes)
x2_min = 0.0
x2_max = 255.0
with self.cached_session(use_gpu=False) as sess:
t1 = constant_op.constant(x1, shape=tensor_in_sizes, dtype=dtypes.quint8)
t2 = constant_op.constant(x2, shape=filter_in_sizes, dtype=dtypes.quint8)
conv = nn_ops.quantized_conv2d(
t1,
t2,
out_type=dtypes.qint32,
strides=[1, stride, stride, 1],
padding=padding,
min_input=x1_min,
max_input=x1_max,
min_filter=x2_min,
max_filter=x2_max)
value = self.evaluate(conv)
quantized_output = value[0]
output_min = value[1]
output_max = value[2]
float_output = self._QuantizedOutputToFloat(quantized_output, output_min,
output_max)
self.assertArrayNear(expected, float_output.flatten(), 1.0)
self.assertEqual(value[0].shape, conv[0].get_shape())
def _assertQuantizedArrayEquals(self, iarray1, iarray2):
for i1, i2 in zip(iarray1, iarray2):
self.assertTrue(i1 == i2)
def _QuantizedOutputToFloat(self, quantized, quantized_min, quantized_max):
number_of_bits = 32
number_of_steps = 1 << number_of_bits
range_adjust = (number_of_steps / (number_of_steps - 1.0))
quantized_range = ((quantized_max - quantized_min) * range_adjust)
range_scale = (quantized_range / number_of_steps)
lowest_quantized = -(1 << (number_of_bits - 1))
result = np.array([(quantized_min +
((float(x) - lowest_quantized) * range_scale))
for x in quantized.flatten()])
return result
def testConv2D1x1Filter(self):
# Our generated input is [batch, rows, cols, depth], and looks like this:
# (1,2,3) (4,5,6) (7,8,9)
# (10,11,12) (13,14,15) (16,17,18)
# The filter data is:
# (1,4,7) (2,5,8) (3,6,9)
# That means the calculations are:
# 1*1+2*4+3*7=30
# 1*2+2*5+3*8=36
# 1*3+2*6+3*9=42
# 4*1+5*4+6*7=66
# 4*2+5*5+6*8=81
# 4*3+5*6+6*9=96
# 7*1+5*8+6*9=102
# 7*2+8*5+9*8=126
# 7*3+8*6+9*9=150
# 10*1+11*4+12*7=138
# 10*2+11*5+12*8=171
# 10*3+11*6+12*9=204
# 13*1+14*4+15*7=174
# 13*2+14*5+15*8=216
# 13*3+14*6+15*9=258, clamped to 255
# 16*1+17*4+18*7=210
# 16*2+17*5+18*8=261, clamped to 255
# 16*3+17*6+18*9=312, clamped to 255
# Because the output shift is zero, we call the non-optimized reference
# path for the convolution.
expected_output = [
30, 36, 42, 66, 81, 96, 102, 126, 150, 138, 171, 204, 174, 216, 258,
210, 261, 312
]
self._VerifyValues(
tensor_in_sizes=[1, 2, 3, 3],
filter_in_sizes=[1, 1, 3, 3],
stride=1,
padding="VALID",
expected=expected_output)
def testConv2D2x2Filter(self):
# Our generated input is [batch, rows, cols, depth], and looks like this:
# (1,2,3) (4,5,6) (7,8,9)
# (10,11,12) (13,14,15) (16,17,18)
# The filter data is [filter_height, filter_width, depth, filter_count]:
# ( 1, 4, 7) (10, 13, 16)
# (19,22,25) (28, 31, 34)
# -
# ( 2, 5, 8) (11, 14, 17)
# (20,23,26) (29, 32, 35)
# -
# ( 3, 6, 9) (12, 15, 18)
# (21,24,27) (30, 33, 36)
# The raw accumulated totals are:
# 1*1+2*4+3*7+4*10+5*13+6*16+10*19+11*22+12*25+13*28+14*31+15*34=2271
# 1*2+2*5+3*8+4*11+5*14+6*17+10*20+11*23+12*26+13*29+14*32+15*35=2367
# 1*3+2*6+3*9+4*12+5*15+6*18+10*21+11*24+12*27+13*30+14*33+15*36=2463
# 4*1+5*4+6*7+7*10+8*13+9*16+13*19+14*22+15*25+16*28+17*31+18*34=2901
# 4*2+5*5+6*8+7*11+8*14+9*17+13*20+14*23+15*26+16*29+17*32+18*35=3033
# 4*3+5*6+6*9+7*12+8*15+9*18+13*21+14*24+15*27+16*30+17*33+18*36=3165
# The expected values are taken from the raw totals and rescaled to fit into
# eight bits.
expected_output = [2271.0, 2367.0, 2463.0, 2901.0, 3033.0, 3165.0]
self._VerifyValues(
tensor_in_sizes=[1, 2, 3, 3],
filter_in_sizes=[2, 2, 3, 3],
stride=1,
padding="VALID",
expected=expected_output)
def testConv2D1x2Filter(self):
# The outputs are computed using third_party/py/IPython/notebook.
# With a shift of 21, we should execute the optimized path here.
expected_output = [
231.0, 252.0, 273.0, 384.0, 423.0, 462.0, 690.0, 765.0, 840.0, 843.0,
936.0, 1029.0
]
self._VerifyValues(
tensor_in_sizes=[1, 2, 3, 3],
filter_in_sizes=[1, 2, 3, 3],
stride=1,
padding="VALID",
expected=expected_output)
def testConv2D2x2FilterStride2(self):
# With a shift of 21, we should execute the optimized path here.
expected_output = [2271.0, 2367.0, 2463.0]
self._VerifyValues(
tensor_in_sizes=[1, 2, 3, 3],
filter_in_sizes=[2, 2, 3, 3],
stride=2,
padding="VALID",
expected=expected_output)
def testConv2D2x2FilterStride2Same(self):
# With a shift of 21, we should execute the optimized path here.
expected_output = [2271.0, 2367.0, 2463.0, 1230.0, 1305.0, 1380.0]
self._VerifyValues(
tensor_in_sizes=[1, 2, 3, 3],
filter_in_sizes=[2, 2, 3, 3],
stride=2,
padding="SAME",
expected=expected_output)
if __name__ == "__main__":
test.main()