Another big change here is changing the use of this flag to use the value in the HloModule and not the global environment variable which was bad temporary behavior. PiperOrigin-RevId: 316844057 Change-Id: I995715ccc9009e9845fca77060b835fdc50fb4d2
1683 lines
61 KiB
Python
1683 lines
61 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for miscellaneous functionality in tensorflow.ops.nn."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import math
|
|
|
|
from absl.testing import parameterized
|
|
import numpy as np
|
|
from six.moves import xrange # pylint: disable=redefined-builtin
|
|
|
|
from tensorflow.python.eager import def_function
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.framework import tensor_spec
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import gradient_checker
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.ops import nn
|
|
from tensorflow.python.ops import nn_impl
|
|
from tensorflow.python.ops import nn_ops
|
|
from tensorflow.python.ops import partitioned_variables
|
|
from tensorflow.python.ops import variable_scope
|
|
from tensorflow.python.ops import variables
|
|
import tensorflow.python.ops.nn_grad # pylint: disable=unused-import
|
|
from tensorflow.python.ops.nn_impl import _compute_sampled_logits
|
|
from tensorflow.python.ops.ragged import ragged_factory_ops
|
|
from tensorflow.python.platform import test as test_lib
|
|
|
|
|
|
class ZeroFractionTest(test_lib.TestCase):
|
|
|
|
def _ZeroFraction(self, x):
|
|
assert x.shape
|
|
total_elements = np.prod(x.shape)
|
|
nonzeros = np.count_nonzero(x.flatten())
|
|
return 1.0 - nonzeros / total_elements
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testZeroFraction(self):
|
|
x_shape = [5, 17]
|
|
x_np = np.random.randint(0, 2, size=x_shape).astype(np.float32)
|
|
y_np = self._ZeroFraction(x_np)
|
|
|
|
x_tf = constant_op.constant(x_np)
|
|
x_tf.set_shape(x_shape)
|
|
y_tf = nn_impl.zero_fraction(x_tf)
|
|
y_tf_np = self.evaluate(y_tf)
|
|
|
|
eps = 1e-8
|
|
self.assertAllClose(y_tf_np, y_np, eps)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testZeroFractionEmpty(self):
|
|
x = np.zeros(0)
|
|
y = self.evaluate(nn_impl.zero_fraction(x))
|
|
self.assertTrue(np.isnan(y))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testZeroFraction2_27Zeros(self):
|
|
sparsity = nn_impl.zero_fraction(
|
|
array_ops.zeros([int(2**27 * 1.01)], dtype=dtypes.int8))
|
|
self.assertAllClose(1.0, self.evaluate(sparsity))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testZeroFraction2_27Ones(self):
|
|
sparsity = nn_impl.zero_fraction(
|
|
array_ops.ones([int(2**27 * 1.01)], dtype=dtypes.int8))
|
|
self.assertAllClose(0.0, self.evaluate(sparsity))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testUnknownSize(self):
|
|
value = array_ops.placeholder(dtype=dtypes.float32)
|
|
sparsity = nn_impl.zero_fraction(value)
|
|
with self.cached_session() as sess:
|
|
self.assertAllClose(
|
|
0.25,
|
|
sess.run(sparsity, {value: [[0., 1.], [0.3, 2.]]}))
|
|
|
|
|
|
class SoftmaxTest(test_lib.TestCase, parameterized.TestCase):
|
|
|
|
def _softmax(self, x):
|
|
assert len(x.shape) == 2
|
|
m = x.max(1)[:, np.newaxis]
|
|
u = np.exp(x - m)
|
|
z = u.sum(1)[:, np.newaxis]
|
|
return u / z
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testSoftmax(self):
|
|
x_shape = [5, 10]
|
|
x_np = np.random.randn(*x_shape).astype(np.float32)
|
|
y_np = self._softmax(x_np)
|
|
x_tf = constant_op.constant(x_np)
|
|
y_tf = nn_ops.softmax_v2(x_tf)
|
|
y_tf_last_dim = nn_ops.softmax_v2(x_tf, 1)
|
|
y_tf_np = self.evaluate(y_tf)
|
|
y_tf_last_dim_np = self.evaluate(y_tf_last_dim)
|
|
eps = 1e-3
|
|
self.assertAllClose(y_tf_np, y_np, eps)
|
|
self.assertAllClose(y_tf_last_dim_np, y_np, eps)
|
|
|
|
def testSoftmaxAxes(self):
|
|
arr = np.linspace(0., 1, 12).reshape(3, 4)
|
|
x_neg_axis = nn_ops.softmax_v2(arr, axis=-2)
|
|
y_pos_axis = nn_ops.softmax_v2(arr, axis=0)
|
|
z_gt_axis = nn_ops.softmax_v2(arr, axis=0)
|
|
x_neg_axis_tf = self.evaluate(x_neg_axis)
|
|
y_pos_axis_tf = self.evaluate(y_pos_axis)
|
|
z_gt_axis_tf = self.evaluate(z_gt_axis)
|
|
eps = 1e-3
|
|
self.assertAllClose(x_neg_axis_tf, y_pos_axis_tf, eps)
|
|
self.assertAllClose(y_pos_axis_tf, z_gt_axis_tf, eps)
|
|
|
|
def testSoftmaxExtendType(self):
|
|
x_shape = [5, 10]
|
|
x_np = np.random.randn(*x_shape).astype(np.float32)
|
|
|
|
x_f32_tf = constant_op.constant(x_np)
|
|
x_bf16_tf = math_ops.cast(x_f32_tf, dtypes.bfloat16)
|
|
y_f32_tf = self.evaluate(nn_ops.softmax(x_f32_tf))
|
|
y_bf16_tf = self.evaluate(nn_ops.softmax(x_bf16_tf))
|
|
expected = math_ops.cast(y_f32_tf, dtypes.bfloat16)
|
|
tol = x_shape[1] * 1e-3
|
|
self.assertAllClose(y_bf16_tf, expected, rtol=tol, atol=tol)
|
|
|
|
@parameterized.parameters(((5, 10),), ((2, 3, 4),))
|
|
@test_util.run_deprecated_v1
|
|
def testGradient(self, x_shape):
|
|
x_np = np.random.randn(*x_shape).astype(np.float64)
|
|
with self.cached_session():
|
|
x_tf = constant_op.constant(x_np)
|
|
y_tf = nn_ops.softmax_v2(x_tf)
|
|
err = gradient_checker.compute_gradient_error(x_tf, x_shape, y_tf,
|
|
x_shape)
|
|
eps = 2e-8
|
|
self.assertLess(err, eps)
|
|
|
|
|
|
class LogPoissonLossTest(test_lib.TestCase):
|
|
|
|
def _log_poisson_loss(self, x, z, compute_full_loss=False):
|
|
lpl = np.exp(x) - z * x
|
|
if compute_full_loss:
|
|
stirling_approx = z * np.log(z) - z + 0.5 * np.log(2. * np.pi * z)
|
|
lpl += np.ma.masked_array(stirling_approx, mask=(z <= 1)).filled(0.)
|
|
return lpl
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testLogPoissonLoss(self):
|
|
x_shape = [5, 10]
|
|
x_np = np.random.randn(*x_shape).astype(np.float32)
|
|
z_np = np.random.randint(0, 5, size=x_shape).astype(np.float32)
|
|
y_np = self._log_poisson_loss(x_np, z_np, compute_full_loss=False)
|
|
y_np_stirling = self._log_poisson_loss(x_np, z_np, compute_full_loss=True)
|
|
y_tf = nn_impl.log_poisson_loss(z_np, x_np, compute_full_loss=False)
|
|
y_tf_stirling = nn_impl.log_poisson_loss(z_np, x_np, compute_full_loss=True)
|
|
y_tf_np = self.evaluate(y_tf)
|
|
y_tf_np_stirling = self.evaluate(y_tf_stirling)
|
|
eps = 1e-3
|
|
self.assertAllClose(y_tf_np, y_np, eps)
|
|
self.assertAllClose(y_tf_np_stirling, y_np_stirling, eps)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testGradient(self):
|
|
x_shape = [5, 10]
|
|
x_np = np.random.randn(*x_shape).astype(np.float64)
|
|
z_np = np.random.randint(0, 5, size=x_shape).astype(np.float64)
|
|
with self.cached_session():
|
|
x_tf = constant_op.constant(x_np)
|
|
y_tf = nn_impl.log_poisson_loss(z_np, x_tf, compute_full_loss=False)
|
|
y_tf_stirling = nn_impl.log_poisson_loss(
|
|
z_np, x_tf, compute_full_loss=True)
|
|
err = gradient_checker.compute_gradient_error(x_tf, x_shape, y_tf,
|
|
x_shape)
|
|
err_stirling = gradient_checker.compute_gradient_error(
|
|
x_tf, x_shape, y_tf_stirling, x_shape)
|
|
eps = 1e-6
|
|
self.assertLess(err, eps)
|
|
self.assertLess(err_stirling, eps)
|
|
|
|
|
|
class LogSoftmaxTest(test_lib.TestCase, parameterized.TestCase):
|
|
|
|
def _log_softmax(self, x):
|
|
assert len(x.shape) == 2
|
|
m = x.max(1)[:, np.newaxis]
|
|
u = x - m
|
|
return u - np.log(np.sum(np.exp(u), 1, keepdims=True))
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testLogSoftmax(self):
|
|
x_shape = [5, 10]
|
|
x_np = np.random.randn(*x_shape).astype(np.float32)
|
|
y_np = self._log_softmax(x_np)
|
|
x_tf = constant_op.constant(x_np)
|
|
y_tf = nn_ops.log_softmax_v2(x_tf)
|
|
y_tf_np = self.evaluate(y_tf)
|
|
eps = 1e-3
|
|
self.assertAllClose(y_tf_np, y_np, eps)
|
|
|
|
def testLogSoftmaxAxes(self):
|
|
arr = np.linspace(0., 1, 12).reshape(3, 4)
|
|
x_neg_axis = nn_ops.log_softmax_v2(arr, axis=-2)
|
|
y_pos_axis = nn_ops.log_softmax_v2(arr, axis=0)
|
|
z_gt_axis = nn_ops.log_softmax_v2(arr, axis=0)
|
|
x_neg_axis_tf = self.evaluate(x_neg_axis)
|
|
y_pos_axis_tf = self.evaluate(y_pos_axis)
|
|
z_gt_axis_tf = self.evaluate(z_gt_axis)
|
|
eps = 1e-3
|
|
self.assertAllClose(x_neg_axis_tf, y_pos_axis_tf, eps)
|
|
self.assertAllClose(y_pos_axis_tf, z_gt_axis_tf, eps)
|
|
|
|
@parameterized.parameters(((5, 10),), ((2, 3, 4),))
|
|
@test_util.run_deprecated_v1
|
|
def testGradient(self, x_shape):
|
|
x_np = np.random.randn(*x_shape).astype(np.float64)
|
|
with self.cached_session():
|
|
x_tf = constant_op.constant(x_np)
|
|
y_tf = nn_ops.log_softmax_v2(x_tf)
|
|
err = gradient_checker.compute_gradient_error(x_tf, x_shape, y_tf,
|
|
x_shape)
|
|
eps = 1e-7
|
|
self.assertLess(err, eps)
|
|
|
|
|
|
class L2LossTest(test_lib.TestCase):
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testL2Loss(self):
|
|
for dtype in [dtypes.float32, dtypes.float64]:
|
|
x = constant_op.constant(
|
|
[1.0, 0.0, 3.0, 2.0], shape=[2, 2], name="x", dtype=dtype)
|
|
l2loss = nn_ops.l2_loss(x)
|
|
value = self.evaluate(l2loss)
|
|
self.assertAllClose(7.0, value)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testGradient(self):
|
|
x_shape = [20, 7, 3]
|
|
np.random.seed(1) # Make it reproducible.
|
|
x_val = np.random.random_sample(x_shape).astype(np.float64)
|
|
with self.cached_session():
|
|
x = constant_op.constant(x_val, name="x")
|
|
output = nn_ops.l2_loss(x)
|
|
err = gradient_checker.compute_gradient_error(x, x_shape, output, [1])
|
|
print("L2Loss gradient err = %g " % err)
|
|
err_tolerance = 1e-10
|
|
self.assertLess(err, err_tolerance)
|
|
|
|
|
|
class L2NormalizeTest(test_lib.TestCase):
|
|
|
|
def _l2Normalize(self, x, dim):
|
|
if isinstance(dim, list):
|
|
norm = np.linalg.norm(x, axis=tuple(dim))
|
|
for d in dim:
|
|
norm = np.expand_dims(norm, d)
|
|
return x / norm
|
|
else:
|
|
norm = np.apply_along_axis(np.linalg.norm, dim, x)
|
|
return x / np.expand_dims(norm, dim)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testL2Normalize(self):
|
|
x_shape = [20, 7, 3]
|
|
np.random.seed(1)
|
|
x_np = np.random.random_sample(x_shape).astype(np.float32)
|
|
for dim in range(len(x_shape)):
|
|
y_np = self._l2Normalize(x_np, dim)
|
|
x_tf = constant_op.constant(x_np, name="x")
|
|
y_tf = nn_impl.l2_normalize_v2(x_tf, dim)
|
|
self.assertAllClose(y_np, self.evaluate(y_tf))
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testL2NormalizeDimArray(self):
|
|
x_shape = [20, 7, 3]
|
|
np.random.seed(1)
|
|
x_np = np.random.random_sample(x_shape).astype(np.float32)
|
|
dim = [1, 2]
|
|
y_np = self._l2Normalize(x_np, dim)
|
|
x_tf = constant_op.constant(x_np, name="x")
|
|
y_tf = nn_impl.l2_normalize_v2(x_tf, dim)
|
|
self.assertAllClose(y_np, self.evaluate(y_tf))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testL2NormalizeGradient(self):
|
|
x_shape = [20, 7, 3]
|
|
np.random.seed(1)
|
|
x_np = np.random.random_sample(x_shape).astype(np.float64)
|
|
for dim in range(len(x_shape)):
|
|
with self.cached_session():
|
|
x_tf = constant_op.constant(x_np, name="x")
|
|
y_tf = nn_impl.l2_normalize_v2(x_tf, dim)
|
|
err = gradient_checker.compute_gradient_error(x_tf, x_shape, y_tf,
|
|
x_shape)
|
|
print("L2Normalize gradient err = %g " % err)
|
|
self.assertLess(err, 1e-4)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testL2NormalizeComplex(self):
|
|
x_shape = [20, 7, 3]
|
|
for dtype in [np.complex64, np.complex128]:
|
|
np.random.seed(1)
|
|
x_np = (
|
|
np.random.random_sample(x_shape).astype(dtype) +
|
|
np.random.random_sample(x_shape).astype(dtype) * 1j)
|
|
for dim in range(len(x_shape)):
|
|
y_np = self._l2Normalize(x_np, dim)
|
|
x_tf = constant_op.constant(x_np, name="x")
|
|
y_tf = nn_impl.l2_normalize_v2(x_tf, dim)
|
|
self.assertAllClose(y_np, self.evaluate(y_tf))
|
|
|
|
|
|
class DropoutTest(test_lib.TestCase):
|
|
|
|
def testDropout(self):
|
|
# Runs dropout with 0-1 tensor 10 times, sum the number of ones and validate
|
|
# that it is producing approximately the right number of ones over a large
|
|
# number of samples, based on the keep probability.
|
|
x_dim = 40
|
|
y_dim = 30
|
|
num_iter = 10
|
|
for keep_prob in [0.1, 0.5, 0.8]:
|
|
t = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32)
|
|
dropout = nn_ops.dropout(t, rate=(1 - keep_prob))
|
|
final_count = 0
|
|
self.assertEqual([x_dim, y_dim], dropout.get_shape())
|
|
for _ in xrange(0, num_iter):
|
|
value = self.evaluate(dropout)
|
|
final_count += np.count_nonzero(value)
|
|
# Verifies that there are only two values: 0 and 1/keep_prob.
|
|
sorted_value = np.unique(np.sort(value))
|
|
self.assertEqual(0, sorted_value[0])
|
|
self.assertAllClose(1 / keep_prob, sorted_value[1])
|
|
|
|
# Check that we are in the 15% error range
|
|
expected_count = x_dim * y_dim * keep_prob * num_iter
|
|
rel_error = math.fabs(final_count - expected_count) / expected_count
|
|
print(rel_error)
|
|
self.assertTrue(rel_error < 0.15)
|
|
|
|
def testShapedDropout(self):
|
|
# Runs dropout with 0-1 tensor 10 times, sum the number of ones and validate
|
|
# that it is producing approximately the right number of ones over a large
|
|
# number of samples, based on the keep probability. This time with shaped
|
|
# noise.
|
|
x_dim = 40 * 30
|
|
y_dim = 3
|
|
num_iter = 10
|
|
for keep_prob in [0.1, 0.5, 0.8]:
|
|
t = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32)
|
|
dropout = nn_ops.dropout(t, rate=(1 - keep_prob), noise_shape=[x_dim, 1])
|
|
self.assertEqual([x_dim, y_dim], dropout.get_shape())
|
|
final_count = 0
|
|
for _ in xrange(0, num_iter):
|
|
value = self.evaluate(dropout)
|
|
final_count += np.count_nonzero(value)
|
|
# Verifies that there are only two values: 0 and 1/keep_prob.
|
|
sorted_value = np.unique(np.sort(value))
|
|
self.assertEqual(0, sorted_value[0])
|
|
self.assertAllClose(1 / keep_prob, sorted_value[1])
|
|
|
|
# Check that we are in the 15% error range
|
|
expected_count = x_dim * y_dim * keep_prob * num_iter
|
|
rel_error = math.fabs(final_count - expected_count) / expected_count
|
|
print(rel_error)
|
|
self.assertTrue(rel_error < 0.15)
|
|
|
|
def testShapedDropoutCorrelation(self):
|
|
# Runs a shaped dropout and tests that the correlations are correct.
|
|
x_dim = 40
|
|
y_dim = 30
|
|
num_iter = 10
|
|
for keep_prob in [0.1, 0.5, 0.8]:
|
|
t = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32)
|
|
dropout = nn_ops.dropout(t, rate=(1 - keep_prob), noise_shape=[x_dim, 1])
|
|
self.assertEqual([x_dim, y_dim], dropout.get_shape())
|
|
for _ in xrange(0, num_iter):
|
|
value = self.evaluate(dropout)
|
|
# Verifies that each y column as only one type of activation.
|
|
for i in xrange(x_dim):
|
|
sorted_value = np.unique(np.sort(value[i, :]))
|
|
self.assertEqual(sorted_value.size, 1)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testDropoutPlaceholderKeepProb(self):
|
|
# Runs dropout with 0-1 tensor 10 times, sum the number of ones and validate
|
|
# that it is producing approximately the right number of ones over a large
|
|
# number of samples, based on the keep probability.
|
|
x_dim = 40
|
|
y_dim = 30
|
|
num_iter = 10
|
|
for keep_prob in [0.1, 0.5, 0.8]:
|
|
with self.cached_session():
|
|
t = constant_op.constant(
|
|
1.0, shape=[x_dim, y_dim], dtype=dtypes.float32)
|
|
keep_prob_placeholder = array_ops.placeholder(dtypes.float32)
|
|
dropout = nn_ops.dropout(t, keep_prob_placeholder)
|
|
final_count = 0
|
|
self.assertEqual([x_dim, y_dim], dropout.get_shape())
|
|
for _ in xrange(0, num_iter):
|
|
value = dropout.eval(feed_dict={keep_prob_placeholder: keep_prob})
|
|
final_count += np.count_nonzero(value)
|
|
# Verifies that there are only two values: 0 and 1/keep_prob.
|
|
sorted_value = np.unique(np.sort(value))
|
|
self.assertEqual(0, sorted_value[0])
|
|
self.assertAllClose(1 / keep_prob, sorted_value[1])
|
|
# Check that we are in the 15% error range
|
|
expected_count = x_dim * y_dim * keep_prob * num_iter
|
|
rel_error = math.fabs(final_count - expected_count) / expected_count
|
|
print(rel_error)
|
|
self.assertTrue(rel_error < 0.15)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testShapedDropoutUnknownShape(self):
|
|
x_dim = 40
|
|
y_dim = 30
|
|
keep_prob = 0.5
|
|
x = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32)
|
|
dropout_x = nn_ops.dropout(
|
|
x,
|
|
rate=(1 - keep_prob),
|
|
noise_shape=array_ops.placeholder(dtypes.int32))
|
|
self.assertEqual(x.get_shape(), dropout_x.get_shape())
|
|
|
|
def testPartialShapedDropout(self):
|
|
x_dim = 40 * 30
|
|
y_dim = 3
|
|
num_iter = 10
|
|
for keep_prob in [0.1, 0.5, 0.8]:
|
|
t = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32)
|
|
# Set noise_shape=[None, 1] which means [x_dim, 1].
|
|
dropout = nn_ops.dropout(t, rate=(1 - keep_prob), noise_shape=[None, 1])
|
|
self.assertEqual([x_dim, y_dim], dropout.get_shape())
|
|
final_count = 0
|
|
for _ in xrange(0, num_iter):
|
|
value = self.evaluate(dropout)
|
|
final_count += np.count_nonzero(value)
|
|
# Verifies that there are only two values: 0 and 1/keep_prob.
|
|
sorted_value = np.unique(np.sort(value))
|
|
self.assertEqual(0, sorted_value[0])
|
|
self.assertAllClose(1 / keep_prob, sorted_value[1])
|
|
|
|
# Check that we are in the 15% error range
|
|
expected_count = x_dim * y_dim * keep_prob * num_iter
|
|
rel_error = math.fabs(final_count - expected_count) / expected_count
|
|
print(rel_error)
|
|
self.assertTrue(rel_error < 0.15)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testInvalidKeepProb(self):
|
|
x_dim = 40
|
|
y_dim = 30
|
|
t = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32)
|
|
with self.assertRaises(ValueError):
|
|
nn_ops.dropout(t, -1.0)
|
|
with self.assertRaises(ValueError):
|
|
nn_ops.dropout(t, 1.1)
|
|
with self.assertRaises(ValueError):
|
|
nn_ops.dropout(t, [0.0, 1.0])
|
|
with self.assertRaises(ValueError):
|
|
nn_ops.dropout(t, array_ops.placeholder(dtypes.float64))
|
|
with self.assertRaises(ValueError):
|
|
nn_ops.dropout(t, array_ops.placeholder(dtypes.float32, shape=[2]))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testInvalidRate(self):
|
|
x_dim = 40
|
|
y_dim = 30
|
|
t = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32)
|
|
with self.assertRaises(ValueError):
|
|
nn_ops.dropout_v2(t, -1.0)
|
|
with self.assertRaises(ValueError):
|
|
nn_ops.dropout_v2(t, 1.1)
|
|
with self.assertRaises(ValueError):
|
|
nn_ops.dropout_v2(t, [0.0, 1.0])
|
|
|
|
def testLargeRate(self):
|
|
x_dim = 40
|
|
y_dim = 30
|
|
t = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32)
|
|
_ = nn_ops.dropout_v2(t, 0.9)
|
|
|
|
def testVariableRef(self):
|
|
x = variable_scope.get_variable("x", shape=[10, 10], dtype=dtypes.float32)
|
|
_ = nn_ops.dropout(x, keep_prob=0.1)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testShapedDropoutShapeError(self):
|
|
# Runs shaped dropout and verifies an error is thrown on misshapen noise.
|
|
x_dim = 40
|
|
y_dim = 30
|
|
keep_prob = 0.5
|
|
t = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32)
|
|
with self.assertRaises(ValueError):
|
|
_ = nn_ops.dropout(
|
|
t, rate=(1 - keep_prob), noise_shape=[x_dim, y_dim + 10])
|
|
with self.assertRaises(ValueError):
|
|
_ = nn_ops.dropout(t, rate=(1 - keep_prob), noise_shape=[x_dim, y_dim, 5])
|
|
with self.assertRaises(ValueError):
|
|
_ = nn_ops.dropout(t, rate=(1 - keep_prob), noise_shape=[x_dim + 3])
|
|
with self.assertRaises(ValueError):
|
|
_ = nn_ops.dropout(t, rate=(1 - keep_prob), noise_shape=[x_dim])
|
|
# test that broadcasting proceeds
|
|
_ = nn_ops.dropout(t, rate=(1 - keep_prob), noise_shape=[y_dim])
|
|
_ = nn_ops.dropout(t, rate=(1 - keep_prob), noise_shape=[1, y_dim])
|
|
_ = nn_ops.dropout(t, rate=(1 - keep_prob), noise_shape=[x_dim, 1])
|
|
_ = nn_ops.dropout(t, rate=(1 - keep_prob), noise_shape=[1, 1])
|
|
|
|
def testNoDropout(self):
|
|
x = array_ops.zeros((5,))
|
|
y = nn_ops.dropout(x, rate=0)
|
|
self.assertAllEqual(x, y)
|
|
|
|
y = nn_ops.dropout_v2(x, rate=0)
|
|
self.assertAllEqual(x, y)
|
|
|
|
def testDropoutWithIntegerInputs(self):
|
|
x = constant_op.constant([1, 1, 1, 1, 1])
|
|
with self.assertRaises(ValueError):
|
|
_ = nn_ops.dropout(x, 0.5)
|
|
|
|
|
|
class ComputeSampledLogitsTest(test_lib.TestCase):
|
|
|
|
def setUp(self):
|
|
self._eps = 1e-3
|
|
|
|
def _GenerateTestData(self, num_classes, dim, batch_size, num_true, labels,
|
|
sampled, subtract_log_q):
|
|
"""Randomly generates input/output data for a single test case.
|
|
|
|
This function returns numpy constants for use in a test case.
|
|
|
|
Args:
|
|
num_classes: An int. The number of embedding classes in the test case.
|
|
dim: An int. The dimension of the embedding.
|
|
batch_size: An int. The batch size.
|
|
num_true: An int. The number of target classes per training example.
|
|
labels: A list of batch_size * num_true ints. The target classes.
|
|
sampled: A list of indices in [0, num_classes).
|
|
subtract_log_q: A bool corresponding to the parameter in
|
|
_compute_sampled_logits().
|
|
|
|
Returns:
|
|
weights: Embedding weights to use as test input. It is a numpy array
|
|
of shape [num_classes, dim]
|
|
biases: Embedding biases to use as test input. It is a numpy array
|
|
of shape [num_classes].
|
|
hidden_acts: Forward activations of the network to use as test input.
|
|
It is a numpy array of shape [batch_size, dim].
|
|
sampled_vals: A tuple based on `sampled` to use as test input in the
|
|
format returned by a *_candidate_sampler function.
|
|
exp_logits: The output logits expected from _compute_sampled_logits().
|
|
It is a numpy array of shape [batch_size, num_true + len(sampled)].
|
|
exp_labels: The output labels expected from _compute_sampled_logits().
|
|
It is a numpy array of shape [batch_size, num_true + len(sampled)].
|
|
"""
|
|
weights = np.random.randn(num_classes, dim).astype(np.float32)
|
|
biases = np.random.randn(num_classes).astype(np.float32)
|
|
hidden_acts = np.random.randn(batch_size, dim).astype(np.float32)
|
|
|
|
true_exp = np.full([batch_size, 1], fill_value=0.5, dtype=np.float32)
|
|
sampled_exp = np.full([len(sampled)], fill_value=0.5, dtype=np.float32)
|
|
sampled_vals = (sampled, true_exp, sampled_exp)
|
|
|
|
sampled_w, sampled_b = weights[sampled], biases[sampled]
|
|
true_w, true_b = weights[labels], biases[labels]
|
|
|
|
true_logits = np.sum(
|
|
hidden_acts.reshape((batch_size, 1, dim)) * true_w.reshape(
|
|
(batch_size, num_true, dim)),
|
|
axis=2)
|
|
true_b = true_b.reshape((batch_size, num_true))
|
|
true_logits += true_b
|
|
sampled_logits = np.dot(hidden_acts, sampled_w.T) + sampled_b
|
|
|
|
if subtract_log_q:
|
|
true_logits -= np.log(true_exp)
|
|
sampled_logits -= np.log(sampled_exp[np.newaxis, :])
|
|
|
|
exp_logits = np.concatenate([true_logits, sampled_logits], axis=1)
|
|
exp_labels = np.hstack((np.ones_like(true_logits) / num_true,
|
|
np.zeros_like(sampled_logits)))
|
|
|
|
return weights, biases, hidden_acts, sampled_vals, exp_logits, exp_labels
|
|
|
|
def _ShardTestEmbeddings(self, weights, biases, num_shards):
|
|
"""Shards the weights and biases returned by _GenerateTestData.
|
|
|
|
Args:
|
|
weights: The weights returned by _GenerateTestData.
|
|
biases: The biases returned by _GenerateTestData.
|
|
num_shards: The number of shards to create.
|
|
|
|
Returns:
|
|
sharded_weights: A list of size `num_shards` containing all the weights.
|
|
sharded_biases: A list of size `num_shards` containing all the biases.
|
|
"""
|
|
with ops.Graph().as_default() as g:
|
|
sharded_weights = variable_scope.get_variable(
|
|
"w",
|
|
partitioner=partitioned_variables.fixed_size_partitioner(num_shards),
|
|
initializer=constant_op.constant(weights))
|
|
sharded_biases = variable_scope.get_variable(
|
|
"b",
|
|
partitioner=partitioned_variables.fixed_size_partitioner(num_shards),
|
|
initializer=constant_op.constant(biases))
|
|
with self.session(graph=g) as sess:
|
|
variables.global_variables_initializer().run()
|
|
return self.evaluate([list(sharded_weights), list(sharded_biases)])
|
|
|
|
def testShapes(self):
|
|
np.random.seed(0)
|
|
num_classes = 5
|
|
batch_size = 3
|
|
|
|
for num_true in range(1, 5):
|
|
labels = np.random.randint(
|
|
low=0, high=num_classes, size=batch_size * num_true)
|
|
(weights, biases, hidden_acts, sampled_vals, exp_logits,
|
|
exp_labels) = self._GenerateTestData(
|
|
num_classes=num_classes,
|
|
dim=10,
|
|
batch_size=batch_size,
|
|
num_true=num_true,
|
|
labels=labels,
|
|
sampled=[1, 0, 2, 3],
|
|
subtract_log_q=False)
|
|
logits_tensor, labels_tensor = _compute_sampled_logits(
|
|
weights=constant_op.constant(weights),
|
|
biases=constant_op.constant(biases),
|
|
labels=constant_op.constant(
|
|
labels, dtype=dtypes.int64, shape=(batch_size, num_true)),
|
|
inputs=constant_op.constant(hidden_acts),
|
|
num_sampled=4,
|
|
num_classes=num_classes,
|
|
num_true=num_true,
|
|
sampled_values=sampled_vals,
|
|
subtract_log_q=False,
|
|
remove_accidental_hits=False,
|
|
partition_strategy="div",
|
|
name="sampled_logits_basic_num_true_%d" % num_true)
|
|
got_logits, got_labels = self.evaluate([logits_tensor, labels_tensor])
|
|
self.assertEqual(exp_logits.shape, got_logits.shape, self._eps)
|
|
self.assertEqual(exp_labels.shape, got_labels.shape, self._eps)
|
|
|
|
def testBasic(self):
|
|
"""Without accidental hit removal or subtract_log_q."""
|
|
np.random.seed(0)
|
|
num_classes = 5
|
|
batch_size = 3
|
|
|
|
for num_true in range(1, 5):
|
|
labels = np.random.randint(
|
|
low=0, high=num_classes, size=batch_size * num_true)
|
|
(weights, biases, hidden_acts, sampled_vals, exp_logits,
|
|
exp_labels) = self._GenerateTestData(
|
|
num_classes=num_classes,
|
|
dim=10,
|
|
batch_size=batch_size,
|
|
num_true=num_true,
|
|
labels=labels,
|
|
sampled=[1, 0, 2, 3],
|
|
subtract_log_q=False)
|
|
logits_tensor, labels_tensor = _compute_sampled_logits(
|
|
weights=constant_op.constant(weights),
|
|
biases=constant_op.constant(biases),
|
|
labels=constant_op.constant(
|
|
labels, dtype=dtypes.int64, shape=(batch_size, num_true)),
|
|
inputs=constant_op.constant(hidden_acts),
|
|
num_sampled=4,
|
|
num_classes=num_classes,
|
|
num_true=num_true,
|
|
sampled_values=sampled_vals,
|
|
subtract_log_q=False,
|
|
remove_accidental_hits=False,
|
|
partition_strategy="div",
|
|
name="sampled_logits_basic_num_true_%d" % num_true)
|
|
got_logits, got_labels = self.evaluate([logits_tensor, labels_tensor])
|
|
self.assertAllClose(exp_logits, got_logits, self._eps)
|
|
self.assertAllClose(exp_labels, got_labels, self._eps)
|
|
|
|
def testAccidentalHitRemoval(self):
|
|
"""With accidental hit removal, no subtract_log_q."""
|
|
np.random.seed(0)
|
|
num_classes = 5
|
|
batch_size = 3
|
|
sampled = [1, 0, 2, 3]
|
|
|
|
for num_true in range(1, 5):
|
|
labels = np.random.randint(
|
|
low=0, high=num_classes, size=batch_size * num_true)
|
|
(weights, biases, hidden_acts, sampled_vals, _,
|
|
_) = self._GenerateTestData(
|
|
num_classes=num_classes,
|
|
dim=10,
|
|
batch_size=batch_size,
|
|
num_true=num_true,
|
|
labels=labels,
|
|
sampled=sampled,
|
|
subtract_log_q=False)
|
|
logits_tensor, _ = _compute_sampled_logits(
|
|
weights=constant_op.constant(weights),
|
|
biases=constant_op.constant(biases),
|
|
labels=constant_op.constant(
|
|
labels, dtype=dtypes.int64, shape=(batch_size, num_true)),
|
|
inputs=constant_op.constant(hidden_acts),
|
|
num_sampled=len(sampled),
|
|
num_classes=num_classes,
|
|
num_true=num_true,
|
|
sampled_values=sampled_vals,
|
|
subtract_log_q=False,
|
|
remove_accidental_hits=True,
|
|
partition_strategy="div",
|
|
name="sampled_logits_accidental_hit_removal_num_true_%d" % num_true)
|
|
# Test that the exponentiated logits of accidental hits are near 0.
|
|
# First we need to find the hits in this random test run:
|
|
labels_reshape = labels.reshape((batch_size, num_true))
|
|
got_logits = self.evaluate(logits_tensor)
|
|
for row in xrange(batch_size):
|
|
row_labels = labels_reshape[row, :]
|
|
for col in xrange(len(sampled)):
|
|
if sampled[col] in row_labels:
|
|
# We need to add the num_true_test offset into logits_*
|
|
self.assertNear(
|
|
np.exp(got_logits[row, col + num_true]), 0., self._eps)
|
|
|
|
def testSubtractLogQ(self):
|
|
"""With subtract_log_q, no accidental hit removal."""
|
|
np.random.seed(0)
|
|
num_classes = 5
|
|
batch_size = 3
|
|
|
|
for num_true in range(1, 5):
|
|
labels = np.random.randint(
|
|
low=0, high=num_classes, size=batch_size * num_true)
|
|
(weights, biases, hidden_acts, sampled_vals, exp_logits,
|
|
exp_labels) = self._GenerateTestData(
|
|
num_classes=num_classes,
|
|
dim=10,
|
|
batch_size=batch_size,
|
|
num_true=num_true,
|
|
labels=labels,
|
|
sampled=[1, 0, 2, 3],
|
|
subtract_log_q=True)
|
|
logits_tensor, labels_tensor = _compute_sampled_logits(
|
|
weights=constant_op.constant(weights),
|
|
biases=constant_op.constant(biases),
|
|
labels=constant_op.constant(
|
|
labels, dtype=dtypes.int64, shape=(batch_size, num_true)),
|
|
inputs=constant_op.constant(hidden_acts),
|
|
num_sampled=4,
|
|
num_classes=num_classes,
|
|
num_true=num_true,
|
|
sampled_values=sampled_vals,
|
|
subtract_log_q=True,
|
|
remove_accidental_hits=False,
|
|
partition_strategy="div",
|
|
name="sampled_logits_subtract_log_q_num_true_%d" % num_true)
|
|
got_logits, got_labels = self.evaluate([logits_tensor, labels_tensor])
|
|
self.assertAllClose(exp_logits, got_logits, self._eps)
|
|
self.assertAllClose(exp_labels, got_labels, self._eps)
|
|
|
|
def testSharded(self):
|
|
"""With sharded weights and sharded biases."""
|
|
np.random.seed(0)
|
|
num_classes = 5
|
|
batch_size = 3
|
|
|
|
for num_true in range(1, 5):
|
|
labels = np.random.randint(
|
|
low=0, high=num_classes, size=batch_size * num_true)
|
|
(weights, biases, hidden_acts, sampled_vals, exp_logits,
|
|
exp_labels) = self._GenerateTestData(
|
|
num_classes=num_classes,
|
|
dim=10,
|
|
batch_size=batch_size,
|
|
num_true=num_true,
|
|
labels=labels,
|
|
sampled=[1, 0, 2, 3],
|
|
subtract_log_q=False)
|
|
weight_shards, bias_shards = self._ShardTestEmbeddings(
|
|
weights, biases, num_shards=3)
|
|
logits_tensor, labels_tensor = _compute_sampled_logits(
|
|
weights=[constant_op.constant(shard) for shard in weight_shards],
|
|
biases=[constant_op.constant(shard) for shard in bias_shards],
|
|
labels=constant_op.constant(
|
|
labels, dtype=dtypes.int64, shape=(batch_size, num_true)),
|
|
inputs=constant_op.constant(hidden_acts),
|
|
num_sampled=4,
|
|
num_classes=num_classes,
|
|
num_true=num_true,
|
|
sampled_values=sampled_vals,
|
|
subtract_log_q=False,
|
|
remove_accidental_hits=False,
|
|
partition_strategy="div",
|
|
name="sampled_logits_sharded_num_true_%d" % num_true)
|
|
got_logits, got_labels = self.evaluate([logits_tensor, labels_tensor])
|
|
self.assertAllClose(exp_logits, got_logits, self._eps)
|
|
self.assertAllClose(exp_labels, got_labels, self._eps)
|
|
|
|
def testNCELoss(self):
|
|
# A simple test to verify the numerics.
|
|
|
|
def _SigmoidCrossEntropyWithLogits(logits, targets):
|
|
# logits, targets: float arrays of the same shape.
|
|
assert logits.shape == targets.shape
|
|
pred = 1. / (1. + np.exp(-logits))
|
|
eps = 0.0001
|
|
pred = np.minimum(np.maximum(pred, eps), 1 - eps)
|
|
return -targets * np.log(pred) - (1. - targets) * np.log(1. - pred)
|
|
|
|
np.random.seed(0)
|
|
num_classes = 5
|
|
batch_size = 3
|
|
labels = [0, 1, 2]
|
|
(weights, biases, hidden_acts, sampled_vals, exp_logits,
|
|
exp_labels) = self._GenerateTestData(
|
|
num_classes=num_classes,
|
|
dim=10,
|
|
batch_size=batch_size,
|
|
num_true=1,
|
|
labels=labels,
|
|
sampled=[1, 0, 2, 3],
|
|
subtract_log_q=True)
|
|
exp_nce_loss = np.sum(
|
|
_SigmoidCrossEntropyWithLogits(exp_logits, exp_labels), 1)
|
|
|
|
got_nce_loss = nn_impl.nce_loss_v2(
|
|
weights=constant_op.constant(weights),
|
|
biases=constant_op.constant(biases),
|
|
labels=constant_op.constant(labels, shape=(batch_size, 1)),
|
|
inputs=constant_op.constant(hidden_acts),
|
|
num_sampled=4,
|
|
num_classes=num_classes,
|
|
num_true=1,
|
|
sampled_values=sampled_vals)
|
|
|
|
self.assertAllClose(exp_nce_loss, self.evaluate(got_nce_loss), 1e-4)
|
|
|
|
# Test with sharded weights and sharded biases.
|
|
weight_shards, bias_shards = self._ShardTestEmbeddings(
|
|
weights, biases, num_shards=3)
|
|
got_nce_loss = nn_impl.nce_loss_v2(
|
|
weights=[constant_op.constant(shard) for shard in weight_shards],
|
|
biases=[constant_op.constant(shard) for shard in bias_shards],
|
|
labels=constant_op.constant(labels, shape=(batch_size, 1)),
|
|
inputs=constant_op.constant(hidden_acts),
|
|
num_sampled=4,
|
|
num_classes=num_classes,
|
|
num_true=1,
|
|
sampled_values=sampled_vals)
|
|
|
|
self.assertAllClose(exp_nce_loss, self.evaluate(got_nce_loss), 1e-4)
|
|
|
|
def testSampledSoftmaxLoss(self):
|
|
# A simple test to verify the numerics.
|
|
|
|
def _SoftmaxCrossEntropyWithLogits(logits, targets):
|
|
# logits, targets: float arrays of the same shape.
|
|
assert logits.shape == targets.shape
|
|
stable_exp_logits = np.exp(
|
|
logits - np.amax(logits, axis=1, keepdims=True))
|
|
pred = stable_exp_logits / np.sum(stable_exp_logits, 1, keepdims=True)
|
|
return -np.sum(targets * np.log(pred + 1.0e-20), axis=1)
|
|
|
|
np.random.seed(0)
|
|
num_classes = 5
|
|
batch_size = 3
|
|
labels = [0, 1, 2]
|
|
(weights, biases, hidden_acts, sampled_vals, exp_logits,
|
|
exp_labels) = self._GenerateTestData(
|
|
num_classes=num_classes,
|
|
dim=10,
|
|
batch_size=batch_size,
|
|
num_true=1,
|
|
labels=labels,
|
|
sampled=[1, 0, 2, 3],
|
|
subtract_log_q=True)
|
|
exp_sampled_softmax_loss = _SoftmaxCrossEntropyWithLogits(
|
|
exp_logits, exp_labels)
|
|
|
|
got_sampled_softmax_loss = nn_impl.sampled_softmax_loss_v2(
|
|
weights=constant_op.constant(weights),
|
|
biases=constant_op.constant(biases),
|
|
labels=constant_op.constant(labels, shape=(batch_size, 1)),
|
|
inputs=constant_op.constant(hidden_acts),
|
|
num_sampled=4,
|
|
num_classes=num_classes,
|
|
num_true=1,
|
|
sampled_values=sampled_vals,
|
|
remove_accidental_hits=False)
|
|
|
|
self.assertAllClose(exp_sampled_softmax_loss,
|
|
self.evaluate(got_sampled_softmax_loss), 1e-4)
|
|
|
|
# Test with sharded weights and sharded biases.
|
|
weight_shards, bias_shards = self._ShardTestEmbeddings(
|
|
weights, biases, num_shards=3)
|
|
got_sampled_softmax_loss = nn_impl.sampled_softmax_loss_v2(
|
|
weights=[constant_op.constant(shard) for shard in weight_shards],
|
|
biases=[constant_op.constant(shard) for shard in bias_shards],
|
|
labels=constant_op.constant(labels, shape=(batch_size, 1)),
|
|
inputs=constant_op.constant(hidden_acts),
|
|
num_sampled=4,
|
|
num_classes=num_classes,
|
|
num_true=1,
|
|
sampled_values=sampled_vals,
|
|
remove_accidental_hits=False)
|
|
|
|
self.assertAllClose(exp_sampled_softmax_loss,
|
|
self.evaluate(got_sampled_softmax_loss), 1e-4)
|
|
|
|
def testSampledSoftmaxLossBf16(self):
|
|
# A simple test to verify the numerics for bfloat16.
|
|
def _SoftmaxCrossEntropyWithLogits(logits, targets):
|
|
# logits, targets: float arrays of the same shape.
|
|
assert logits.shape == targets.shape
|
|
stable_exp_logits = np.exp(
|
|
logits - np.amax(logits, axis=1, keepdims=True))
|
|
pred = stable_exp_logits / np.sum(stable_exp_logits, 1, keepdims=True)
|
|
return -np.sum(targets * np.log(pred + 1.0e-20), axis=1)
|
|
|
|
np.random.seed(0)
|
|
num_classes = 5
|
|
batch_size = 3
|
|
labels = [0, 1, 2]
|
|
sampled = [1, 0, 2, 3]
|
|
(weights, biases, hidden_acts, _, exp_logits,
|
|
exp_labels) = self._GenerateTestData(
|
|
num_classes=num_classes,
|
|
dim=10,
|
|
batch_size=batch_size,
|
|
num_true=1,
|
|
labels=labels,
|
|
sampled=sampled,
|
|
subtract_log_q=True)
|
|
exp_sampled_softmax_loss = _SoftmaxCrossEntropyWithLogits(
|
|
exp_logits, exp_labels)
|
|
|
|
true_exp_bf16 = np.full([batch_size, 1],
|
|
fill_value=0.5,
|
|
dtype=dtypes.bfloat16.as_numpy_dtype)
|
|
sampled_exp_bf16 = np.full([len(sampled)],
|
|
fill_value=0.5,
|
|
dtype=dtypes.bfloat16.as_numpy_dtype)
|
|
sampled_vals_bf16 = (sampled, true_exp_bf16, sampled_exp_bf16)
|
|
|
|
got_sampled_softmax_loss = math_ops.cast(
|
|
nn_impl.sampled_softmax_loss_v2(
|
|
weights=constant_op.constant(weights, dtype=dtypes.bfloat16),
|
|
biases=constant_op.constant(biases, dtype=dtypes.bfloat16),
|
|
labels=constant_op.constant(
|
|
labels, shape=(batch_size, 1), dtype=dtypes.bfloat16),
|
|
inputs=constant_op.constant(hidden_acts, dtype=dtypes.bfloat16),
|
|
num_sampled=4,
|
|
num_classes=num_classes,
|
|
num_true=1,
|
|
sampled_values=sampled_vals_bf16,
|
|
remove_accidental_hits=False), dtypes.float32)
|
|
|
|
self.assertAllClose(exp_sampled_softmax_loss,
|
|
self.evaluate(got_sampled_softmax_loss), 1e-1)
|
|
|
|
|
|
class CReluTest(test_lib.TestCase):
|
|
|
|
def test(self):
|
|
np.random.seed(1) # Make it reproducible.
|
|
x = np.random.randn(3, 4).astype(np.float32)
|
|
y = np.concatenate([x * (x > 0), -x * (x < 0)], axis=1)
|
|
|
|
z = self.evaluate(nn_ops.crelu(constant_op.constant(x)))
|
|
self.assertAllClose(y, z, 1e-4)
|
|
|
|
|
|
class ReluTest(test_lib.TestCase):
|
|
|
|
def test(self):
|
|
np.random.seed(1) # Make it reproducible.
|
|
x = np.random.randn(3, 4).astype(np.float32)
|
|
y = np.maximum(x, 0.0)
|
|
|
|
z = self.evaluate(nn_ops.relu(constant_op.constant(x)))
|
|
self.assertAllEqual(y, z)
|
|
|
|
@test_util.disable_xla(
|
|
"This test relies on undefined behavior that XLA does not replicate")
|
|
@test_util.run_deprecated_v1
|
|
def testNaNs(self):
|
|
# Test that relu(nan) = nan for various sizes.
|
|
for i in range(18):
|
|
x = np.zeros(i) + np.nan
|
|
with self.cached_session():
|
|
z = nn_ops.relu(constant_op.constant(x)).eval()
|
|
self.assertTrue(np.isnan(z).all())
|
|
|
|
|
|
class LeakyReluTest(test_lib.TestCase):
|
|
|
|
def testRange(self):
|
|
batch_size = 3
|
|
height, width = 4, 4
|
|
np.random.seed(1) # Make it reproducible.
|
|
inputs = np.random.uniform(size=(batch_size, height, width, 3)).astype(
|
|
np.float32)
|
|
inputs = constant_op.constant(inputs)
|
|
|
|
outputs = nn_ops.leaky_relu(inputs)
|
|
self.assertEquals(inputs.shape, outputs.shape)
|
|
|
|
inputs, outputs = self.evaluate([inputs, outputs])
|
|
|
|
self.assertGreaterEqual(outputs.min(), 0.0)
|
|
self.assertLessEqual(outputs.max(), 1.0)
|
|
self.assertAllClose(inputs, outputs)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testValues(self):
|
|
for dtype in [np.int32, np.int64, np.float16, np.float32, np.float64]:
|
|
np_values = np.array([-2, -1, 0, 1, 2], dtype=dtype)
|
|
outputs = nn_ops.leaky_relu(constant_op.constant(np_values))
|
|
|
|
outputs = self.evaluate(outputs)
|
|
|
|
tol = 2e-3 if dtype == np.float16 else 1e-6
|
|
self.assertAllClose(
|
|
outputs, [-0.4, -0.2, 0.0, 1.0, 2.0], rtol=tol, atol=tol)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testName(self):
|
|
np_values = np.array([-2, -1, 0, 1, 2], dtype=np.float64)
|
|
outputs_with_name_set = nn_ops.leaky_relu(
|
|
constant_op.constant(np_values),
|
|
name='test_relu_op')
|
|
self.assertEqual(outputs_with_name_set.name, 'test_relu_op:0')
|
|
outputs_without_name_set = nn_ops.leaky_relu(
|
|
constant_op.constant(np_values))
|
|
self.assertEqual(outputs_without_name_set.name, 'LeakyRelu:0')
|
|
|
|
|
|
class SwishTest(test_lib.TestCase):
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testValues(self):
|
|
np_values = np.array(
|
|
[np.linspace(-7.0, 0.0, 100),
|
|
np.linspace(0.0, 7.0, 100)],
|
|
dtype=np.float32)
|
|
tf_values = constant_op.constant(np_values)
|
|
actual_tf_outputs = nn_impl.swish(tf_values)
|
|
expected_tf_outputs = tf_values * math_ops.sigmoid(tf_values)
|
|
|
|
actual_outputs, expected_outputs = self.evaluate(
|
|
[actual_tf_outputs, expected_tf_outputs])
|
|
|
|
self.assertAllClose(actual_outputs, expected_outputs)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testGradients(self):
|
|
shape = [5, 3, 4]
|
|
sigma = 5
|
|
input_values = np.random.randn(*shape) * sigma
|
|
x_tf = constant_op.constant(input_values)
|
|
y_tf = nn_impl.swish(x_tf)
|
|
with self.cached_session():
|
|
err = gradient_checker.compute_gradient_error(x_tf, shape, y_tf, shape)
|
|
self.assertLess(err, 1e-4)
|
|
|
|
|
|
class MomentsTest(test_lib.TestCase):
|
|
|
|
def doOutputTest(self,
|
|
input_shape,
|
|
moments_axes,
|
|
tol=1e-4,
|
|
check_gradients=False):
|
|
for mu in [0.0, 1.0, 1e3]:
|
|
for sigma in [1.0, 0.1]:
|
|
for keep_dims in [True, False]:
|
|
input_values = np.random.rand(*input_shape) * sigma + mu
|
|
expected_mean = np.mean(
|
|
input_values, axis=moments_axes, keepdims=keep_dims)
|
|
expected_var = np.var(
|
|
input_values, axis=moments_axes, keepdims=keep_dims)
|
|
with ops.Graph().as_default() as g:
|
|
with self.session(graph=g) as sess:
|
|
inputs = constant_op.constant(
|
|
input_values, shape=input_shape, dtype=dtypes.float32)
|
|
mean, variance = nn_impl.moments_v2(
|
|
inputs, moments_axes, keepdims=keep_dims)
|
|
|
|
if check_gradients:
|
|
err = gradient_checker.compute_gradient_error(
|
|
inputs, input_shape, mean, mean.shape.as_list())
|
|
self.assertLess(err, 1e-3)
|
|
err = gradient_checker.compute_gradient_error(
|
|
inputs, input_shape, variance, variance.shape.as_list())
|
|
self.assertLess(err, 1e-3)
|
|
|
|
# Evaluate.
|
|
[mean, variance] = self.evaluate([mean, variance])
|
|
# Make sure that there are no NaNs
|
|
self.assertFalse(np.isnan(mean).any())
|
|
self.assertFalse(np.isnan(variance).any())
|
|
self.assertAllClose(mean, expected_mean, rtol=tol, atol=tol)
|
|
self.assertAllClose(variance, expected_var, rtol=tol, atol=tol)
|
|
|
|
def testOutputAndGradient2DInput0(self):
|
|
self.doOutputTest((10, 10), (0,), check_gradients=True)
|
|
|
|
def testOutputAndGradient2DInput01(self):
|
|
self.doOutputTest((10, 10), (0, 1), check_gradients=True)
|
|
|
|
def testOutput2DInput0(self):
|
|
self.doOutputTest((10, 300), (0,))
|
|
|
|
def testOutput2DInput1(self):
|
|
self.doOutputTest((10, 300), (1,))
|
|
|
|
def testOutput2DInput01(self):
|
|
self.doOutputTest((10, 300), (0, 1))
|
|
|
|
def testOutput4DInput0(self):
|
|
self.doOutputTest((10, 10, 10, 30), (0,))
|
|
|
|
def testOutput4DInput1(self):
|
|
self.doOutputTest((10, 10, 10, 30), (1,))
|
|
|
|
def testOutput4DInput3(self):
|
|
self.doOutputTest((10, 10, 10, 30), (3,))
|
|
|
|
def testOutput4DInput012(self):
|
|
self.doOutputTest((10, 10, 10, 30), (0, 1, 2))
|
|
|
|
def testOutput4DInput123(self):
|
|
self.doOutputTest((10, 10, 10, 30), (1, 2, 3))
|
|
|
|
|
|
class DataFormatDimMapTest(test_lib.TestCase):
|
|
|
|
def _test(self, x_val, y_val_expected):
|
|
x = constant_op.constant(x_val)
|
|
y = nn_ops.data_format_dim_map(x)
|
|
|
|
y_val = self.evaluate(y)
|
|
self.assertAllEqual(y_val, y_val_expected)
|
|
|
|
def test(self):
|
|
self._test(0, 0)
|
|
self._test(1, 2)
|
|
self._test(2, 3)
|
|
self._test(3, 1)
|
|
self._test(-1, 1)
|
|
self._test(-2, 3)
|
|
self._test(-3, 2)
|
|
self._test(-4, 0)
|
|
self._test([1, 3], [2, 1])
|
|
self._test([1, 3, -2], [2, 1, 3])
|
|
self._test([1, -3, -2], [2, 2, 3])
|
|
self._test([[1, -3], [1, -1]], [[2, 2], [2, 1]])
|
|
|
|
def testNHWCtoNCHW(self):
|
|
x_val = [1, -3, -2]
|
|
y_val_expected = [2, 2, 3]
|
|
x = constant_op.constant(x_val)
|
|
y = nn_ops.data_format_dim_map(x, src_format="NHWC", dst_format="NCHW")
|
|
with test_util.use_gpu():
|
|
y_val = self.evaluate(y)
|
|
self.assertAllEqual(y_val, y_val_expected)
|
|
|
|
def testNHWCtoHWNC(self):
|
|
x_val = [-4, -3, -2, -1, 0, 1, 2, 3]
|
|
y_val_expected = [2, 0, 1, 3, 2, 0, 1, 3]
|
|
x = constant_op.constant(x_val)
|
|
y = nn_ops.data_format_dim_map(x, src_format="NHWC", dst_format="HWNC")
|
|
with test_util.use_gpu():
|
|
y_val = self.evaluate(y)
|
|
self.assertAllEqual(y_val, y_val_expected)
|
|
|
|
def testNHWCtoWHCN(self):
|
|
x_val = [-4, -3, -2, -1, 0, 1, 2, 3]
|
|
y_val_expected = [3, 1, 0, 2, 3, 1, 0, 2]
|
|
x = constant_op.constant(x_val)
|
|
y = nn_ops.data_format_dim_map(x, src_format="NHWC", dst_format="WHCN")
|
|
with test_util.use_gpu():
|
|
y_val = self.evaluate(y)
|
|
self.assertAllEqual(y_val, y_val_expected)
|
|
|
|
def testArbitraryASCII(self):
|
|
x_val = [-4, -3, -2, -1, 0, 1, 2, 3]
|
|
y_val_expected = [3, 2, 1, 0, 3, 2, 1, 0]
|
|
x = constant_op.constant(x_val)
|
|
y = nn_ops.data_format_dim_map(x, src_format="qwer", dst_format="rewq")
|
|
with test_util.use_gpu():
|
|
y_val = self.evaluate(y)
|
|
self.assertAllEqual(y_val, y_val_expected)
|
|
|
|
|
|
class DataFormatVectorPermuteTest(test_lib.TestCase):
|
|
|
|
def testNHWCToNCHW(self):
|
|
x_val = [7, 4, 9, 3]
|
|
x = constant_op.constant(x_val)
|
|
y = nn_ops.data_format_vec_permute(x)
|
|
with test_util.use_gpu():
|
|
y_val = self.evaluate(y)
|
|
self.assertAllEqual(y_val, [7, 3, 4, 9])
|
|
|
|
def testNHWCToNCHW_Size2(self):
|
|
x_val = [4, 9]
|
|
x = constant_op.constant(x_val)
|
|
y = nn_ops.data_format_vec_permute(x)
|
|
with test_util.use_gpu():
|
|
y_val = self.evaluate(y)
|
|
self.assertAllEqual(y_val, [4, 9])
|
|
|
|
@test_util.disable_xla("unsupported data format")
|
|
def testNHWCToWHCN(self):
|
|
x_val = [7, 4, 9, 3]
|
|
x = constant_op.constant(x_val)
|
|
y = nn_ops.data_format_vec_permute(x, src_format="NHWC", dst_format="WHCN")
|
|
with test_util.use_gpu():
|
|
y_val = self.evaluate(y)
|
|
self.assertAllEqual(y_val, [9, 4, 3, 7])
|
|
|
|
@test_util.disable_xla("unsupported data format")
|
|
def testNHWCToWHCN_Size2(self):
|
|
x_val = [4, 9]
|
|
x = constant_op.constant(x_val)
|
|
y = nn_ops.data_format_vec_permute(x, src_format="NHWC", dst_format="WHCN")
|
|
with test_util.use_gpu():
|
|
y_val = self.evaluate(y)
|
|
self.assertAllEqual(y_val, [9, 4])
|
|
|
|
def testNCHWToNHWC(self):
|
|
x_val = [7, 4, 9, 3]
|
|
x = constant_op.constant(x_val)
|
|
y = nn_ops.data_format_vec_permute(x, src_format="NCHW", dst_format="NHWC")
|
|
with test_util.use_gpu():
|
|
y_val = self.evaluate(y)
|
|
self.assertAllEqual(y_val, [7, 9, 3, 4])
|
|
|
|
def testNCHWToNHWC_Size2(self):
|
|
x_val = [9, 3]
|
|
x = constant_op.constant(x_val)
|
|
y = nn_ops.data_format_vec_permute(x)
|
|
with test_util.use_gpu():
|
|
y_val = self.evaluate(y)
|
|
self.assertAllEqual(y_val, [9, 3])
|
|
|
|
def testNHWCToHWNC(self):
|
|
x_val = [7, 4, 9, 3]
|
|
x = constant_op.constant(x_val)
|
|
y = nn_ops.data_format_vec_permute(x, src_format="NHWC", dst_format="HWNC")
|
|
with test_util.use_gpu():
|
|
y_val = self.evaluate(y)
|
|
self.assertAllEqual(y_val, [4, 9, 7, 3])
|
|
|
|
def testHWNCToNHWC(self):
|
|
x_val = [7, 4, 9, 3]
|
|
x = constant_op.constant(x_val)
|
|
y = nn_ops.data_format_vec_permute(x, src_format="HWNC", dst_format="NHWC")
|
|
with test_util.use_gpu():
|
|
y_val = self.evaluate(y)
|
|
self.assertAllEqual(y_val, [9, 7, 4, 3])
|
|
|
|
def testNHWCToNCHW2D(self):
|
|
x_val = [[7, 4], [9, 3], [4, 5], [5, 1]]
|
|
x = constant_op.constant(x_val)
|
|
y = nn_ops.data_format_vec_permute(x)
|
|
with test_util.use_gpu():
|
|
y_val = self.evaluate(y)
|
|
self.assertAllEqual(y_val, [[7, 4], [5, 1], [9, 3], [4, 5]])
|
|
|
|
def testNHWCToHWNC2D(self):
|
|
x_val = [[7, 4], [9, 3], [4, 5], [5, 1]]
|
|
x = constant_op.constant(x_val)
|
|
y = nn_ops.data_format_vec_permute(x, src_format="NHWC", dst_format="HWNC")
|
|
with test_util.use_gpu():
|
|
y_val = self.evaluate(y)
|
|
self.assertAllEqual(y_val, [[9, 3], [4, 5], [7, 4], [5, 1]])
|
|
|
|
def testHWNCToNHWC2D(self):
|
|
x_val = [[7, 4], [9, 3], [4, 5], [5, 1]]
|
|
x = constant_op.constant(x_val)
|
|
y = nn_ops.data_format_vec_permute(x, src_format="HWNC", dst_format="NHWC")
|
|
with test_util.use_gpu():
|
|
y_val = self.evaluate(y)
|
|
self.assertAllEqual(y_val, [[4, 5], [7, 4], [9, 3], [5, 1]])
|
|
|
|
def testNCHWToNHWC2D(self):
|
|
x_val = [[7, 4], [9, 3], [4, 5], [5, 1]]
|
|
x = constant_op.constant(x_val)
|
|
y = nn_ops.data_format_vec_permute(x, src_format="NCHW", dst_format="NHWC")
|
|
with test_util.use_gpu():
|
|
y_val = self.evaluate(y)
|
|
self.assertAllEqual(y_val, [[7, 4], [4, 5], [5, 1], [9, 3]])
|
|
|
|
|
|
@test_util.run_all_in_graph_and_eager_modes
|
|
class AvgPoolTest(test_lib.TestCase):
|
|
|
|
def test1DTensor(self):
|
|
x = array_ops.ones([3, 6, 5])
|
|
ksize = 2
|
|
strides = 2
|
|
|
|
y1 = nn_ops.avg_pool_v2(x, ksize, strides, "SAME")
|
|
y2 = nn_ops.avg_pool1d(x, ksize, strides, "SAME")
|
|
|
|
self.assertAllEqual(self.evaluate(y1), self.evaluate(y2))
|
|
|
|
def test1DNumpy(self):
|
|
# explicitly use float32 for ROCm, as MIOpen does not yet support float64
|
|
# np.ones defaults to using float64 when dtype is not explicitly specified
|
|
dtype = np.float32 if test_lib.is_built_with_rocm() else np.float64
|
|
x = np.ones([3, 6, 5], dtype=dtype)
|
|
ksize = 2
|
|
strides = 2
|
|
|
|
y1 = nn_ops.avg_pool_v2(x, ksize, strides, "SAME")
|
|
y2 = nn_ops.avg_pool1d(x, ksize, strides, "SAME")
|
|
|
|
self.assertAllEqual(self.evaluate(y1), self.evaluate(y2))
|
|
|
|
def test1DNumpyWithGolden(self):
|
|
dtype = np.float32 if test_lib.is_built_with_rocm() else np.float64
|
|
x = np.array([[[3], [6], [5]],
|
|
[[1], [0], [1]]], dtype=dtype)
|
|
ksize = 2
|
|
strides = 1
|
|
y = nn_ops.avg_pool1d(x, ksize, strides, "SAME")
|
|
expected_y = np.array([[[4.5], [5.5], [5.0]],
|
|
[[0.5], [0.5], [1.0]]], dtype=dtype)
|
|
self.assertAllEqual(self.evaluate(y), expected_y)
|
|
|
|
def test2DTensor(self):
|
|
x = array_ops.ones([3, 6, 6, 5])
|
|
ksize = 2
|
|
strides = 2
|
|
|
|
y1 = nn_ops.avg_pool_v2(x, ksize, strides, "SAME")
|
|
y2 = nn_ops.avg_pool(x, ksize, strides, "SAME")
|
|
|
|
self.assertAllEqual(self.evaluate(y1), self.evaluate(y2))
|
|
|
|
def test2DNumpy(self):
|
|
# explicitly use float32 for ROCm, as MIOpen does not yet support float64
|
|
# np.ones defaults to using float64 when dtype is not explicitly specified
|
|
dtype = np.float32 if test_lib.is_built_with_rocm() else np.float64
|
|
x = np.ones([3, 6, 6, 5], dtype=dtype)
|
|
ksize = 2
|
|
strides = 2
|
|
|
|
y1 = nn_ops.avg_pool_v2(x, ksize, strides, "SAME")
|
|
y2 = nn_ops.avg_pool(x, ksize, strides, "SAME")
|
|
|
|
self.assertAllEqual(self.evaluate(y1), self.evaluate(y2))
|
|
|
|
def test3DTensor(self):
|
|
if test_lib.is_built_with_rocm():
|
|
self.skipTest("Pooling with 3D tensors is not supported in ROCm")
|
|
x = array_ops.ones([3, 7, 6, 6, 5])
|
|
ksize = 2
|
|
strides = 2
|
|
|
|
y1 = nn_ops.avg_pool_v2(x, ksize, strides, "SAME")
|
|
y2 = nn_ops.avg_pool3d(x, ksize, strides, "SAME")
|
|
|
|
self.assertAllEqual(self.evaluate(y1), self.evaluate(y2))
|
|
|
|
def test3DNumpy(self):
|
|
if test_lib.is_built_with_rocm():
|
|
self.skipTest("Pooling with 3D tensors is not supported in ROCm")
|
|
x = np.ones([3, 7, 6, 6, 5], dtype=np.float32)
|
|
ksize = 2
|
|
strides = 2
|
|
|
|
y1 = nn_ops.avg_pool_v2(x, ksize, strides, "SAME")
|
|
y2 = nn_ops.avg_pool3d(x, ksize, strides, "SAME")
|
|
|
|
self.assertAllEqual(self.evaluate(y1), self.evaluate(y2))
|
|
|
|
|
|
@test_util.run_all_in_graph_and_eager_modes
|
|
class MaxPoolTest(test_lib.TestCase):
|
|
|
|
def test1DTensor(self):
|
|
x = array_ops.ones([3, 6, 5])
|
|
ksize = 2
|
|
strides = 2
|
|
|
|
y1 = nn_ops.max_pool_v2(x, ksize, strides, "SAME")
|
|
y2 = nn_ops.max_pool1d(x, ksize, strides, "SAME")
|
|
|
|
self.assertAllEqual(self.evaluate(y1), self.evaluate(y2))
|
|
|
|
def test1DNumpy(self):
|
|
# explicitly use float32 for ROCm, as MIOpen does not yet support float64
|
|
# np.ones defaults to using float64 when dtype is not explicitly specified
|
|
dtype = np.float32 if test_lib.is_built_with_rocm() else np.float64
|
|
x = np.ones([3, 6, 5], dtype=dtype)
|
|
ksize = 2
|
|
strides = 2
|
|
|
|
y1 = nn_ops.max_pool_v2(x, ksize, strides, "SAME")
|
|
y2 = nn_ops.max_pool1d(x, ksize, strides, "SAME")
|
|
|
|
self.assertAllEqual(self.evaluate(y1), self.evaluate(y2))
|
|
|
|
def test1DNumpyWithGolden(self):
|
|
dtype = np.float32 if test_lib.is_built_with_rocm() else np.float64
|
|
x = np.array([[[3], [6], [5]],
|
|
[[1], [0], [1]]], dtype=dtype)
|
|
ksize = 2
|
|
strides = 1
|
|
y = nn_ops.max_pool1d(x, ksize, strides, "SAME")
|
|
expected_y = np.array([[[6], [6], [5]],
|
|
[[1], [1], [1]]], dtype=dtype)
|
|
self.assertAllEqual(self.evaluate(y), expected_y)
|
|
|
|
def test2DTensor(self):
|
|
x = array_ops.ones([3, 6, 6, 5])
|
|
ksize = 2
|
|
strides = 2
|
|
|
|
y1 = nn_ops.max_pool_v2(x, ksize, strides, "SAME")
|
|
y2 = nn_ops.max_pool(x, ksize, strides, "SAME")
|
|
|
|
self.assertAllEqual(self.evaluate(y1), self.evaluate(y2))
|
|
|
|
def test2DNumpy(self):
|
|
# explicitly use float32 for ROCm, as MIOpen does not yet support float64
|
|
# np.ones defaults to using float64 when dtype is not explicitly specified
|
|
dtype = np.float32 if test_lib.is_built_with_rocm() else np.float64
|
|
x = np.ones([3, 6, 6, 5], dtype=dtype)
|
|
ksize = 2
|
|
strides = 2
|
|
|
|
y1 = nn_ops.max_pool_v2(x, ksize, strides, "SAME")
|
|
y2 = nn_ops.max_pool(x, ksize, strides, "SAME")
|
|
|
|
self.assertAllEqual(self.evaluate(y1), self.evaluate(y2))
|
|
|
|
def test3DTensor(self):
|
|
if test_lib.is_built_with_rocm():
|
|
self.skipTest("Pooling with 3D tensors is not supported in ROCm")
|
|
x = array_ops.ones([3, 7, 6, 6, 5])
|
|
ksize = 2
|
|
strides = 2
|
|
|
|
y1 = nn_ops.max_pool_v2(x, ksize, strides, "SAME")
|
|
y2 = nn_ops.max_pool3d(x, ksize, strides, "SAME")
|
|
|
|
self.assertAllEqual(self.evaluate(y1), self.evaluate(y2))
|
|
|
|
def test3DNumpy(self):
|
|
if test_lib.is_built_with_rocm():
|
|
self.skipTest("Pooling with 3D tensors is not supported in ROCm")
|
|
x = np.ones([3, 7, 6, 6, 5], dtype=np.float32)
|
|
ksize = 2
|
|
strides = 2
|
|
|
|
y1 = nn_ops.max_pool_v2(x, ksize, strides, "SAME")
|
|
y2 = nn_ops.max_pool3d(x, ksize, strides, "SAME")
|
|
|
|
self.assertAllEqual(self.evaluate(y1), self.evaluate(y2))
|
|
|
|
def testIncorrectSizeInputSmall(self):
|
|
x = array_ops.ones([3, 4])
|
|
with self.assertRaisesRegex(
|
|
ValueError, "Input tensor must be of rank 3, 4 or 5 but was 2."):
|
|
nn_ops.max_pool_v2(x, 2, 2, "SAME")
|
|
|
|
def testIncorrectSizeInput(self):
|
|
x = array_ops.ones([3, 4, 1, 2, 1, 2])
|
|
with self.assertRaisesRegex(
|
|
ValueError, "Input tensor must be of rank 3, 4 or 5 but was 6."):
|
|
nn_ops.max_pool_v2(x, 2, 2, "SAME")
|
|
|
|
|
|
@test_util.run_all_in_graph_and_eager_modes
|
|
class ConvolutionTest(test_lib.TestCase):
|
|
|
|
def testUnknownSize(self):
|
|
x = tensor_spec.TensorSpec(None, dtypes.float32, name="x")
|
|
k = np.ones([3, 6, 6, 5], dtype=np.float32)
|
|
|
|
@def_function.function
|
|
def F(value):
|
|
return nn_ops.convolution(value, k, "SAME")
|
|
|
|
F.get_concrete_function(x)
|
|
|
|
|
|
class ConvTransposeTest(test_lib.TestCase):
|
|
|
|
def test1D(self):
|
|
t = array_ops.ones([2, 4, 3])
|
|
v = array_ops.ones([2, 5, 3])
|
|
strides = 2
|
|
|
|
y1 = nn_ops.conv1d_transpose(t, v, [2, 8, 5], strides)
|
|
y2 = nn_ops.conv_transpose(t, v, [2, 8, 5], strides)
|
|
|
|
self.assertAllEqual(self.evaluate(y1), self.evaluate(y2))
|
|
|
|
def test1DTensor(self):
|
|
t = array_ops.ones([2, 4, 3])
|
|
v = array_ops.ones([2, 5, 3])
|
|
strides = 2
|
|
|
|
y1 = nn_ops.conv1d_transpose(t, v, [2, 8, 5], strides)
|
|
y2 = nn_ops.conv_transpose(t, v, constant_op.constant([2, 8, 5]), strides)
|
|
|
|
self.assertAllEqual(self.evaluate(y1), self.evaluate(y2))
|
|
|
|
def test2D(self):
|
|
t = array_ops.ones([2, 4, 4, 3])
|
|
v = array_ops.ones([2, 2, 5, 3])
|
|
strides = 2
|
|
|
|
y1 = nn_ops.conv2d_transpose_v2(t, v, [2, 8, 8, 5], strides)
|
|
y2 = nn_ops.conv_transpose(t, v, [2, 8, 8, 5], strides)
|
|
|
|
self.assertAllEqual(self.evaluate(y1), self.evaluate(y2))
|
|
|
|
def test2DTensor(self):
|
|
t = array_ops.ones([2, 4, 4, 3])
|
|
v = array_ops.ones([2, 2, 5, 3])
|
|
strides = 2
|
|
|
|
y1 = nn_ops.conv2d_transpose_v2(t, v, [2, 8, 8, 5], strides)
|
|
y2 = nn_ops.conv_transpose(t, v, constant_op.constant([2, 8, 8, 5]),
|
|
strides)
|
|
|
|
self.assertAllEqual(self.evaluate(y1), self.evaluate(y2))
|
|
|
|
def test3D(self):
|
|
t = array_ops.ones([2, 4, 4, 4, 3])
|
|
v = array_ops.ones([2, 2, 2, 5, 3])
|
|
strides = 2
|
|
|
|
y1 = nn_ops.conv3d_transpose_v2(t, v, [2, 8, 8, 8, 5], strides)
|
|
y2 = nn_ops.conv_transpose(t, v, [2, 8, 8, 8, 5], strides)
|
|
|
|
self.assertAllEqual(self.evaluate(y1), self.evaluate(y2))
|
|
|
|
def test3DTensor(self):
|
|
t = array_ops.ones([2, 4, 4, 4, 3])
|
|
v = array_ops.ones([2, 2, 2, 5, 3])
|
|
strides = 2
|
|
|
|
y1 = nn_ops.conv3d_transpose_v2(t, v, [2, 8, 8, 8, 5], strides)
|
|
y2 = nn_ops.conv_transpose(t, v, constant_op.constant([2, 8, 8, 8, 5]),
|
|
strides)
|
|
|
|
self.assertAllEqual(self.evaluate(y1), self.evaluate(y2))
|
|
|
|
def testIncorrectSizeInputSmall(self):
|
|
with self.assertRaisesRegex(
|
|
ValueError, "output_shape must be of length 3, 4 or 5 but was 2."):
|
|
nn_ops.conv_transpose(None, 2, [2, 3], "SAME")
|
|
|
|
def testIncorrectSizeInput(self):
|
|
with self.assertRaisesRegex(
|
|
ValueError, "output_shape must be of length 3, 4 or 5 but was 6."):
|
|
nn_ops.conv_transpose(None, 2, [2, 3, 4, 2, 5, 1], "SAME")
|
|
|
|
def testTensorsNoShape(self):
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
"output_shape must be a tensor or sized collection."):
|
|
nn_ops.conv_transpose(None, None, None, None)
|
|
|
|
|
|
class RaggedEmbeddingTest(test_lib.TestCase):
|
|
|
|
def testRaggedTensor(self):
|
|
weights = constant_op.constant([[0, 0, 0], [1, 1, 1], [2, 2, 2], [3, 3, 3]])
|
|
ragged_ids = ragged_factory_ops.constant([[1, 2, 3], [0], [1, 2]],
|
|
ragged_rank=1)
|
|
|
|
embedded_ragged = nn.embedding_lookup_ragged(weights, ragged_ids)
|
|
expected_output = ragged_factory_ops.constant(
|
|
[[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[0, 0, 0]], [[1, 1, 1], [2, 2, 2]]
|
|
],
|
|
ragged_rank=1)
|
|
|
|
self.assertAllEqual(expected_output, embedded_ragged)
|
|
|
|
def testMultipleRaggedDimTensor(self):
|
|
weights = constant_op.constant([[0, 0], [1, 1], [2, 2], [3, 3], [4, 4],
|
|
[5, 5], [6, 6]])
|
|
ragged_ids = ragged_factory_ops.constant(
|
|
[[[[3, 4], [0, 6]], []], [[[2, 1], [1, 0]], [[2, 5], [2, 3]]], [[[1, 0]]
|
|
]],
|
|
ragged_rank=2)
|
|
|
|
embedded_ragged = nn.embedding_lookup_ragged(weights, ragged_ids)
|
|
expected_output = ragged_factory_ops.constant(
|
|
[[[[[3, 3], [4, 4]], [[0, 0], [6, 6]]], []],
|
|
[[[[2, 2], [1, 1]], [[1, 1], [0, 0]]],
|
|
[[[2, 2], [5, 5]], [[2, 2], [3, 3]]]], [[[[1, 1], [0, 0]]]]],
|
|
ragged_rank=2)
|
|
|
|
self.assertAllEqual(expected_output, embedded_ragged)
|
|
|
|
def testMissingWeights(self):
|
|
ragged_ids = ragged_factory_ops.constant([[1, 2, 3], [0], [1, 2]])
|
|
|
|
with self.assertRaisesRegex(ValueError,
|
|
"The embedding weights must be specified.*"):
|
|
nn.embedding_lookup_ragged(None, ragged_ids)
|
|
|
|
def testEmptyWeights(self):
|
|
ragged_ids = ragged_factory_ops.constant([[1, 2, 3], [0], [1, 2]])
|
|
|
|
with self.assertRaisesRegex(ValueError,
|
|
"The embedding weights should not be empty.*"):
|
|
nn.embedding_lookup_ragged([], ragged_ids)
|
|
|
|
def testInvalidIndicesType(self):
|
|
weights = constant_op.constant([[0, 0, 0], [1, 1, 1], [2, 2, 2]])
|
|
ragged_ids = ragged_factory_ops.constant([[1., 2., 3.], [1., 2.]])
|
|
|
|
with self.assertRaisesRegex(
|
|
ValueError, "The values contained by the inputs have type*"):
|
|
nn.embedding_lookup_ragged(weights, ragged_ids)
|
|
|
|
def testMaxNormForEmbeddings(self):
|
|
weights = constant_op.constant([[0, 0, 0, 0], [1, 1, 1, 1],
|
|
[2, 2, 2, 2], [3, 3, 3, 3]],
|
|
dtype=dtypes.float32)
|
|
ragged_ids = ragged_factory_ops.constant([[1, 2, 3], [0], [1, 2]],
|
|
ragged_rank=1)
|
|
|
|
actual_embeddings = [
|
|
nn.embedding_lookup(weights, ragged_ids, max_norm=max_norm)
|
|
for max_norm in [1, 2, 5]]
|
|
|
|
expected_embeddings = (
|
|
# max_norm = 1
|
|
[[[.5, .5, .5, .5], [.5, .5, .5, .5], [.5, .5, .5, .5]],
|
|
[[0, 0, 0, 0]], [[.5, .5, .5, .5], [.5, .5, .5, .5]]],
|
|
# max_norm = 2
|
|
[[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]],
|
|
[[0, 0, 0, 0]], [[1, 1, 1, 1], [1, 1, 1, 1]]],
|
|
# max_norm = 5
|
|
[[[1, 1, 1, 1], [2, 2, 2, 2], [2.5, 2.5, 2.5, 2.5]],
|
|
[[0, 0, 0, 0]], [[1, 1, 1, 1], [2, 2, 2, 2]]],
|
|
)
|
|
|
|
for expected, actual in zip(expected_embeddings, actual_embeddings):
|
|
self.assertAllClose(
|
|
ragged_factory_ops.constant(expected, dtype=float, ragged_rank=1),
|
|
actual)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_lib.main()
|