STT-tensorflow/tensorflow/python/ops/image_grad_test.py
TensorFlower Gardener e3241b8b51 Merge pull request from autoih:t_raise
PiperOrigin-RevId: 274856319
Change-Id: Id566d74b067b88354a77cbc213e18a3a8ef634e1
2019-10-15 12:35:31 -07:00

546 lines
21 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for Python ops defined in image_grad.py."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.eager import backprop
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import test_util
from tensorflow.python.ops import gradient_checker
from tensorflow.python.ops import gradient_checker_v2
from tensorflow.python.ops import gradients_impl
from tensorflow.python.ops import image_ops
from tensorflow.python.ops import gen_image_ops
from tensorflow.python.platform import test
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import array_ops
@test_util.for_all_test_methods(test_util.disable_xla,
'align_corners=False not supported by XLA')
class ResizeNearestNeighborOpTest(test.TestCase):
TYPES = [np.float32, np.float64]
def testShapeIsCorrectAfterOp(self):
in_shape = [1, 2, 2, 1]
out_shape = [1, 4, 6, 1]
for nptype in self.TYPES:
x = np.arange(0, 4).reshape(in_shape).astype(nptype)
input_tensor = constant_op.constant(x, shape=in_shape)
resize_out = image_ops.resize_nearest_neighbor(input_tensor,
out_shape[1:3])
with self.cached_session(use_gpu=True):
self.assertEqual(out_shape, list(resize_out.get_shape()))
resize_out = self.evaluate(resize_out)
self.assertEqual(out_shape, list(resize_out.shape))
@test_util.run_deprecated_v1
def testGradFromResizeToLargerInBothDims(self):
in_shape = [1, 2, 3, 1]
out_shape = [1, 4, 6, 1]
for nptype in self.TYPES:
x = np.arange(0, 6).reshape(in_shape).astype(nptype)
with self.cached_session(use_gpu=True):
input_tensor = constant_op.constant(x, shape=in_shape)
resize_out = image_ops.resize_nearest_neighbor(input_tensor,
out_shape[1:3])
err = gradient_checker.compute_gradient_error(
input_tensor, in_shape, resize_out, out_shape, x_init_value=x)
self.assertLess(err, 1e-3)
@test_util.run_deprecated_v1
def testGradFromResizeToSmallerInBothDims(self):
in_shape = [1, 4, 6, 1]
out_shape = [1, 2, 3, 1]
for nptype in self.TYPES:
x = np.arange(0, 24).reshape(in_shape).astype(nptype)
with self.cached_session(use_gpu=True):
input_tensor = constant_op.constant(x, shape=in_shape)
resize_out = image_ops.resize_nearest_neighbor(input_tensor,
out_shape[1:3])
err = gradient_checker.compute_gradient_error(
input_tensor, in_shape, resize_out, out_shape, x_init_value=x)
self.assertLess(err, 1e-3)
@test_util.run_deprecated_v1
def testCompareGpuVsCpu(self):
in_shape = [1, 4, 6, 3]
out_shape = [1, 8, 16, 3]
for nptype in self.TYPES:
x = np.arange(0, np.prod(in_shape)).reshape(in_shape).astype(nptype)
for align_corners in [True, False]:
with self.cached_session(use_gpu=False):
input_tensor = constant_op.constant(x, shape=in_shape)
resize_out = image_ops.resize_nearest_neighbor(
input_tensor, out_shape[1:3], align_corners=align_corners)
grad_cpu = gradient_checker.compute_gradient(
input_tensor, in_shape, resize_out, out_shape, x_init_value=x)
with self.cached_session(use_gpu=True):
input_tensor = constant_op.constant(x, shape=in_shape)
resize_out = image_ops.resize_nearest_neighbor(
input_tensor, out_shape[1:3], align_corners=align_corners)
grad_gpu = gradient_checker.compute_gradient(
input_tensor, in_shape, resize_out, out_shape, x_init_value=x)
self.assertAllClose(grad_cpu, grad_gpu, rtol=1e-5, atol=1e-5)
class ResizeBilinearOpTest(test.TestCase):
def testShapeIsCorrectAfterOp(self):
in_shape = [1, 2, 2, 1]
out_shape = [1, 4, 6, 1]
x = np.arange(0, 4).reshape(in_shape).astype(np.float32)
input_tensor = constant_op.constant(x, shape=in_shape)
resize_out = image_ops.resize_bilinear(input_tensor, out_shape[1:3])
with self.cached_session():
self.assertEqual(out_shape, list(resize_out.get_shape()))
resize_out = self.evaluate(resize_out)
self.assertEqual(out_shape, list(resize_out.shape))
@test_util.run_deprecated_v1
def testGradFromResizeToLargerInBothDims(self):
in_shape = [1, 2, 3, 1]
out_shape = [1, 4, 6, 1]
x = np.arange(0, 6).reshape(in_shape).astype(np.float32)
with self.cached_session():
input_tensor = constant_op.constant(x, shape=in_shape)
resize_out = image_ops.resize_bilinear(input_tensor, out_shape[1:3])
err = gradient_checker.compute_gradient_error(
input_tensor, in_shape, resize_out, out_shape, x_init_value=x)
self.assertLess(err, 1e-3)
@test_util.run_deprecated_v1
def testGradFromResizeToSmallerInBothDims(self):
in_shape = [1, 4, 6, 1]
out_shape = [1, 2, 3, 1]
x = np.arange(0, 24).reshape(in_shape).astype(np.float32)
with self.cached_session():
input_tensor = constant_op.constant(x, shape=in_shape)
resize_out = image_ops.resize_bilinear(input_tensor, out_shape[1:3])
err = gradient_checker.compute_gradient_error(
input_tensor, in_shape, resize_out, out_shape, x_init_value=x)
self.assertLess(err, 1e-3)
@test_util.run_deprecated_v1
def testCompareGpuVsCpu(self):
in_shape = [2, 4, 6, 3]
out_shape = [2, 8, 16, 3]
size = np.prod(in_shape)
x = 1.0 / size * np.arange(0, size).reshape(in_shape).astype(np.float32)
# Align corners will be deprecated for tf2.0 and the false version is not
# supported by XLA.
align_corner_options = [True
] if test_util.is_xla_enabled() else [True, False]
for align_corners in align_corner_options:
grad = {}
for use_gpu in [False, True]:
with self.cached_session(use_gpu=use_gpu):
input_tensor = constant_op.constant(x, shape=in_shape)
resized_tensor = image_ops.resize_bilinear(
input_tensor, out_shape[1:3], align_corners=align_corners)
grad[use_gpu] = gradient_checker.compute_gradient(
input_tensor, in_shape, resized_tensor, out_shape, x_init_value=x)
self.assertAllClose(grad[False], grad[True], rtol=1e-4, atol=1e-4)
@test_util.run_deprecated_v1
def testTypes(self):
in_shape = [1, 4, 6, 1]
out_shape = [1, 2, 3, 1]
x = np.arange(0, 24).reshape(in_shape)
with self.cached_session() as sess:
for dtype in [np.float16, np.float32, np.float64]:
input_tensor = constant_op.constant(x.astype(dtype), shape=in_shape)
resize_out = image_ops.resize_bilinear(input_tensor, out_shape[1:3])
grad = sess.run(gradients_impl.gradients(resize_out, input_tensor))[0]
self.assertAllEqual(in_shape, grad.shape)
# Not using gradient_checker.compute_gradient as I didn't work out
# the changes required to compensate for the lower precision of
# float16 when computing the numeric jacobian.
# Instead, we just test the theoretical jacobian.
self.assertAllEqual([[[[1.], [0.], [1.], [0.], [1.], [0.]], [[0.], [
0.
], [0.], [0.], [0.], [0.]], [[1.], [0.], [1.], [0.], [1.], [0.]],
[[0.], [0.], [0.], [0.], [0.], [0.]]]], grad)
class ResizeBicubicOpTest(test.TestCase):
def testShapeIsCorrectAfterOp(self):
in_shape = [1, 2, 2, 1]
out_shape = [1, 4, 6, 1]
x = np.arange(0, 4).reshape(in_shape).astype(np.float32)
for align_corners in [True, False]:
input_tensor = constant_op.constant(x, shape=in_shape)
resize_out = image_ops.resize_bicubic(
input_tensor, out_shape[1:3], align_corners=align_corners)
with self.cached_session():
self.assertEqual(out_shape, list(resize_out.get_shape()))
resize_out = self.evaluate(resize_out)
self.assertEqual(out_shape, list(resize_out.shape))
@test_util.run_deprecated_v1
def testGradFromResizeToLargerInBothDims(self):
in_shape = [1, 2, 3, 1]
out_shape = [1, 4, 6, 1]
x = np.arange(0, 6).reshape(in_shape).astype(np.float32)
for align_corners in [True, False]:
with self.cached_session():
input_tensor = constant_op.constant(x, shape=in_shape)
resize_out = image_ops.resize_bicubic(input_tensor, out_shape[1:3],
align_corners=align_corners)
err = gradient_checker.compute_gradient_error(
input_tensor, in_shape, resize_out, out_shape, x_init_value=x)
self.assertLess(err, 1e-3)
@test_util.run_deprecated_v1
def testGradFromResizeToSmallerInBothDims(self):
in_shape = [1, 4, 6, 1]
out_shape = [1, 2, 3, 1]
x = np.arange(0, 24).reshape(in_shape).astype(np.float32)
for align_corners in [True, False]:
input_tensor = constant_op.constant(x, shape=in_shape)
resize_out = image_ops.resize_bicubic(
input_tensor, out_shape[1:3], align_corners=align_corners)
with self.cached_session():
err = gradient_checker.compute_gradient_error(
input_tensor, in_shape, resize_out, out_shape, x_init_value=x)
self.assertLess(err, 1e-3)
@test_util.run_deprecated_v1
def testGradOnUnsupportedType(self):
in_shape = [1, 4, 6, 1]
out_shape = [1, 2, 3, 1]
x = np.arange(0, 24).reshape(in_shape).astype(np.uint8)
input_tensor = constant_op.constant(x, shape=in_shape)
resize_out = image_ops.resize_bicubic(input_tensor, out_shape[1:3])
with self.cached_session():
grad = gradients_impl.gradients(input_tensor, [resize_out])
self.assertEqual([None], grad)
class ScaleAndTranslateOpTest(test.TestCase):
@test_util.run_deprecated_v1
def testGrads(self):
in_shape = [1, 2, 3, 1]
out_shape = [1, 4, 6, 1]
x = np.arange(0, 6).reshape(in_shape).astype(np.float32)
kernel_types = [
'lanczos1', 'lanczos3', 'lanczos5', 'gaussian', 'box', 'triangle',
'keyscubic', 'mitchellcubic'
]
scales = [(1.0, 1.0), (0.37, 0.47), (2.1, 2.1)]
translations = [(0.0, 0.0), (3.14, 1.19), (2.1, 3.1), (100.0, 200.0)]
for scale in scales:
for translation in translations:
for kernel_type in kernel_types:
for antialias in [True, False]:
with self.cached_session():
input_tensor = constant_op.constant(x, shape=in_shape)
scale_and_translate_out = image_ops.scale_and_translate(
input_tensor,
out_shape[1:3],
scale=constant_op.constant(scale),
translation=constant_op.constant(translation),
kernel_type=kernel_type,
antialias=antialias)
err = gradient_checker.compute_gradient_error(
input_tensor,
in_shape,
scale_and_translate_out,
out_shape,
x_init_value=x)
self.assertLess(err, 1e-3)
def testIdentityGrads(self):
"""Tests that Gradients for 1.0 scale should be ones for some kernels."""
in_shape = [1, 2, 3, 1]
out_shape = [1, 4, 6, 1]
x = np.arange(0, 6).reshape(in_shape).astype(np.float32)
kernel_types = ['lanczos1', 'lanczos3', 'lanczos5', 'triangle', 'keyscubic']
scale = (1.0, 1.0)
translation = (0.0, 0.0)
antialias = True
for kernel_type in kernel_types:
with self.cached_session():
input_tensor = constant_op.constant(x, shape=in_shape)
with backprop.GradientTape() as tape:
tape.watch(input_tensor)
scale_and_translate_out = image_ops.scale_and_translate(
input_tensor,
out_shape[1:3],
scale=constant_op.constant(scale),
translation=constant_op.constant(translation),
kernel_type=kernel_type,
antialias=antialias)
grad = tape.gradient(scale_and_translate_out, input_tensor)[0]
grad_v = self.evaluate(grad)
self.assertAllClose(np.ones_like(grad_v), grad_v)
class CropAndResizeOpTest(test.TestCase):
def testShapeIsCorrectAfterOp(self):
batch = 2
image_height = 3
image_width = 4
crop_height = 4
crop_width = 5
depth = 2
num_boxes = 2
image_shape = [batch, image_height, image_width, depth]
crop_size = [crop_height, crop_width]
crops_shape = [num_boxes, crop_height, crop_width, depth]
image = np.arange(0, batch * image_height * image_width *
depth).reshape(image_shape).astype(np.float32)
boxes = np.array([[0, 0, 1, 1], [.1, .2, .7, .8]], dtype=np.float32)
box_ind = np.array([0, 1], dtype=np.int32)
crops = image_ops.crop_and_resize(
constant_op.constant(image, shape=image_shape),
constant_op.constant(boxes, shape=[num_boxes, 4]),
constant_op.constant(box_ind, shape=[num_boxes]),
constant_op.constant(crop_size, shape=[2]))
with self.session(use_gpu=True) as sess:
self.assertEqual(crops_shape, list(crops.get_shape()))
crops = self.evaluate(crops)
self.assertEqual(crops_shape, list(crops.shape))
def _randomUniformAvoidAnchors(self, low, high, anchors, radius, num_samples):
"""Generate samples that are far enough from a set of anchor points.
We generate uniform samples in [low, high], then reject those that are less
than radius away from any point in anchors. We stop after we have accepted
num_samples samples.
Args:
low: The lower end of the interval.
high: The upper end of the interval.
anchors: A list of length num_crops with anchor points to avoid.
radius: Distance threshold for the samples from the anchors.
num_samples: How many samples to produce.
Returns:
samples: A list of length num_samples with the accepted samples.
"""
self.assertTrue(low < high)
self.assertTrue(radius >= 0)
num_anchors = len(anchors)
# Make sure that at least half of the interval is not forbidden.
self.assertTrue(2 * radius * num_anchors < 0.5 * (high - low))
anchors = np.reshape(anchors, num_anchors)
samples = []
while len(samples) < num_samples:
sample = np.random.uniform(low, high)
if np.all(np.fabs(sample - anchors) > radius):
samples.append(sample)
return samples
@test_util.run_deprecated_v1
def testGradRandomBoxes(self):
"""Test that the gradient is correct for randomly generated boxes.
The mapping is piecewise differentiable with respect to the box coordinates.
The points where the function is not differentiable are those which are
mapped to image pixels, i.e., the normalized y coordinates in
np.linspace(0, 1, image_height) and normalized x coordinates in
np.linspace(0, 1, image_width). Make sure that the box coordinates are
sufficiently far away from those rectangular grid centers that are points of
discontinuity, so that the finite difference Jacobian is close to the
computed one.
"""
np.random.seed(1) # Make it reproducible.
delta = 1e-3
radius = 2 * delta
low, high = -0.5, 1.5 # Also covers the case of extrapolation.
image_height = 4
for image_width in range(1, 3):
for crop_height in range(1, 3):
for crop_width in range(2, 4):
for depth in range(1, 3):
for num_boxes in range(1, 3):
batch = num_boxes
image_shape = [batch, image_height, image_width, depth]
crop_size = [crop_height, crop_width]
crops_shape = [num_boxes, crop_height, crop_width, depth]
boxes_shape = [num_boxes, 4]
image = np.arange(0, batch * image_height * image_width *
depth).reshape(image_shape).astype(np.float32)
boxes = []
for _ in range(num_boxes):
# pylint: disable=unbalanced-tuple-unpacking
y1, y2 = self._randomUniformAvoidAnchors(
low, high, np.linspace(0, 1, image_height), radius, 2)
x1, x2 = self._randomUniformAvoidAnchors(
low, high, np.linspace(0, 1, image_width), radius, 2)
# pylint: enable=unbalanced-tuple-unpacking
boxes.append([y1, x1, y2, x2])
boxes = np.array(boxes, dtype=np.float32)
box_ind = np.arange(batch, dtype=np.int32)
with self.cached_session(use_gpu=True):
image_tensor = constant_op.constant(image, shape=image_shape)
boxes_tensor = constant_op.constant(boxes, shape=[num_boxes, 4])
box_ind_tensor = constant_op.constant(
box_ind, shape=[num_boxes])
crops = image_ops.crop_and_resize(
image_tensor,
boxes_tensor,
box_ind_tensor,
constant_op.constant(
crop_size, shape=[2]))
err = gradient_checker.compute_gradient_error(
[image_tensor, boxes_tensor], [image_shape, boxes_shape],
crops,
crops_shape,
delta=delta,
x_init_value=[image, boxes])
self.assertLess(err, 2e-3)
@test_util.run_all_in_graph_and_eager_modes
class RGBToHSVOpTest(test.TestCase):
TYPES = [np.float32, np.float64]
def testShapeIsCorrectAfterOp(self):
in_shape = [2, 20, 30, 3]
out_shape = [2, 20, 30, 3]
for nptype in self.TYPES:
x = np.random.randint(0, high=255, size=[2, 20, 30, 3]).astype(nptype)
rgb_input_tensor = constant_op.constant(x, shape=in_shape)
hsv_out = gen_image_ops.rgb_to_hsv(rgb_input_tensor)
with self.cached_session(use_gpu=True):
self.assertEqual(out_shape, list(hsv_out.get_shape()))
hsv_out = self.evaluate(hsv_out)
self.assertEqual(out_shape, list(hsv_out.shape))
def testRGBToHSVGradSimpleCase(self):
def f(x):
return gen_image_ops.rgb_to_hsv(x)
# Building a simple input tensor to avoid any discontinuity
x = np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8,
0.9]]).astype(np.float32)
rgb_input_tensor = constant_op.constant(x, shape=x.shape)
# Computing Analytical and Numerical gradients of f(x)
analytical, numerical = gradient_checker_v2.compute_gradient(
f, [rgb_input_tensor])
self.assertAllClose(numerical, analytical, atol=1e-4)
def testRGBToHSVGradRandomCase(self):
def f(x):
return gen_image_ops.rgb_to_hsv(x)
np.random.seed(0)
# Building a simple input tensor to avoid any discontinuity
x = np.random.rand(1, 5, 5, 3).astype(np.float32)
rgb_input_tensor = constant_op.constant(x, shape=x.shape)
# Computing Analytical and Numerical gradients of f(x)
self.assertLess(
gradient_checker_v2.max_error(
*gradient_checker_v2.compute_gradient(f, [rgb_input_tensor])), 1e-4)
def testRGBToHSVGradSpecialCaseRGreatest(self):
# This test tests a specific subset of the input space
# with a dummy function implemented with native TF operations.
in_shape = [2, 10, 20, 3]
def f(x):
return gen_image_ops.rgb_to_hsv(x)
def f_dummy(x):
# This dummy function is a implementation of RGB to HSV using
# primitive TF functions for one particular case when R>G>B.
r = x[..., 0]
g = x[..., 1]
b = x[..., 2]
# Since MAX = r and MIN = b, we get the following h,s,v values.
v = r
s = 1 - math_ops.div_no_nan(b, r)
h = 60 * math_ops.div_no_nan(g - b, r - b)
h = h / 360
return array_ops.stack([h, s, v], axis=-1)
# Building a custom input tensor where R>G>B
x_reds = np.ones((in_shape[0], in_shape[1], in_shape[2])).astype(np.float32)
x_greens = 0.5 * np.ones(
(in_shape[0], in_shape[1], in_shape[2])).astype(np.float32)
x_blues = 0.2 * np.ones(
(in_shape[0], in_shape[1], in_shape[2])).astype(np.float32)
x = np.stack([x_reds, x_greens, x_blues], axis=-1)
rgb_input_tensor = constant_op.constant(x, shape=in_shape)
# Computing Analytical and Numerical gradients of f(x)
analytical, numerical = gradient_checker_v2.compute_gradient(
f, [rgb_input_tensor])
# Computing Analytical and Numerical gradients of f_dummy(x)
analytical_dummy, numerical_dummy = gradient_checker_v2.compute_gradient(
f_dummy, [rgb_input_tensor])
self.assertAllClose(numerical, analytical, atol=1e-4)
self.assertAllClose(analytical_dummy, analytical, atol=1e-4)
self.assertAllClose(numerical_dummy, numerical, atol=1e-4)
if __name__ == "__main__":
test.main()