The new toggle replaces ENABLE_COND_V2, ENABLE_WHILE_V2, and ENABLE_TENSOR_ARRAY_V2. This means that these can't be toggled independently anymore, notably that v1 TensorArrays can only be run with v1 loops, and v2 TensorArrays with v2 loops. This also introduces a corresponding environment variable TF_ENABLE_CONTROL_FLOW_V2. I kept the old env vars as well in case people are using them. They all flip the new single toggle now. In addition, this change removes some while_v2 code for dealing with v1 TensorArrays, since this is no longer a supported configuration. PiperOrigin-RevId: 224862245
124 lines
3.9 KiB
Python
124 lines
3.9 KiB
Python
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Benchmark for control flow ops."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import time
|
|
|
|
from tensorflow.python.client import session
|
|
from tensorflow.python.eager import context
|
|
from tensorflow.python.eager import function
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import control_flow_ops
|
|
from tensorflow.python.ops import control_flow_util
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.ops import random_ops
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
class CondWithManyIntermediatesBenchmark(test.Benchmark):
|
|
"""Checks the runtime performance of outputting all intermediates."""
|
|
|
|
NUM_INTERMEDIATES = 1000
|
|
NUM_ITERS = 500
|
|
NUM_WARM_UP_ITERS = 50
|
|
|
|
def _create_cond(self, x):
|
|
|
|
def branch_fn():
|
|
# Use a random value so the adds can't be constant folded.
|
|
return x + sum(random_ops.random_normal([])
|
|
for _ in range(self.NUM_INTERMEDIATES))
|
|
|
|
# Use a dynamic predicate to make sure the cond isn't constant folded.
|
|
return control_flow_ops.cond(math_ops.not_equal(x, -1),
|
|
branch_fn, lambda: 0.0)
|
|
|
|
def _benchmark_defun(self):
|
|
"""Benchmarks cond in a defun."""
|
|
|
|
@function.defun
|
|
def cond_fn(x):
|
|
return self._create_cond(x)
|
|
|
|
# Warm up
|
|
for _ in range(self.NUM_WARM_UP_ITERS):
|
|
cond_fn(0.0)
|
|
|
|
start_time = time.time()
|
|
|
|
for _ in range(self.NUM_ITERS):
|
|
cond_fn(0.0)
|
|
|
|
self.report_benchmark(
|
|
wall_time=time.time() - start_time,
|
|
iters=self.NUM_ITERS)
|
|
|
|
def _benchmark_graph(self):
|
|
"""Benchmarks cond in legacy graph mode."""
|
|
with context.graph_mode():
|
|
with ops.Graph().as_default():
|
|
x = array_ops.placeholder(dtypes.float32)
|
|
cond_val = self._create_cond(x)
|
|
|
|
with session.Session() as sess:
|
|
cond_fn = sess.make_callable(cond_val, [x])
|
|
|
|
# Warm up
|
|
for _ in range(self.NUM_WARM_UP_ITERS):
|
|
cond_fn(0.0)
|
|
|
|
start_time = time.time()
|
|
|
|
for _ in range(self.NUM_ITERS):
|
|
cond_fn(0.0)
|
|
|
|
self.report_benchmark(
|
|
wall_time=time.time() - start_time,
|
|
iters=self.NUM_ITERS)
|
|
|
|
def benchmark_cond_v1_defun(self):
|
|
old_val = control_flow_util.ENABLE_CONTROL_FLOW_V2
|
|
control_flow_util.ENABLE_CONTROL_FLOW_V2 = False
|
|
self._benchmark_defun()
|
|
control_flow_util.ENABLE_CONTROL_FLOW_V2 = old_val
|
|
|
|
def benchmark_cond_v2_defun(self):
|
|
old_val = control_flow_util.ENABLE_CONTROL_FLOW_V2
|
|
control_flow_util.ENABLE_CONTROL_FLOW_V2 = True
|
|
self._benchmark_defun()
|
|
control_flow_util.ENABLE_CONTROL_FLOW_V2 = old_val
|
|
|
|
def benchmark_cond_v1_graph(self):
|
|
old_val = control_flow_util.ENABLE_CONTROL_FLOW_V2
|
|
control_flow_util.ENABLE_CONTROL_FLOW_V2 = False
|
|
self._benchmark_graph()
|
|
control_flow_util.ENABLE_CONTROL_FLOW_V2 = old_val
|
|
|
|
def benchmark_cond_v2_graph(self):
|
|
old_val = control_flow_util.ENABLE_CONTROL_FLOW_V2
|
|
control_flow_util.ENABLE_CONTROL_FLOW_V2 = True
|
|
self._benchmark_graph()
|
|
control_flow_util.ENABLE_CONTROL_FLOW_V2 = old_val
|
|
|
|
if __name__ == "__main__":
|
|
ops.enable_eager_execution()
|
|
test.main()
|