STT-tensorflow/tensorflow/python/ops/control_flow_ops_benchmark.py
Skye Wanderman-Milne 1d54cbf4a2 Introduce consolidated ENABLE_CONTROL_FLOW_V2 flag.
The new toggle replaces ENABLE_COND_V2, ENABLE_WHILE_V2, and
ENABLE_TENSOR_ARRAY_V2. This means that these can't be toggled
independently anymore, notably that v1 TensorArrays can only be run
with v1 loops, and v2 TensorArrays with v2 loops.

This also introduces a corresponding environment variable
TF_ENABLE_CONTROL_FLOW_V2. I kept the old env vars as well in case
people are using them. They all flip the new single toggle now.

In addition, this change removes some while_v2 code for dealing with
v1 TensorArrays, since this is no longer a supported configuration.

PiperOrigin-RevId: 224862245
2018-12-10 12:40:28 -08:00

124 lines
3.9 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Benchmark for control flow ops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
from tensorflow.python.client import session
from tensorflow.python.eager import context
from tensorflow.python.eager import function
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import control_flow_util
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.platform import test
class CondWithManyIntermediatesBenchmark(test.Benchmark):
"""Checks the runtime performance of outputting all intermediates."""
NUM_INTERMEDIATES = 1000
NUM_ITERS = 500
NUM_WARM_UP_ITERS = 50
def _create_cond(self, x):
def branch_fn():
# Use a random value so the adds can't be constant folded.
return x + sum(random_ops.random_normal([])
for _ in range(self.NUM_INTERMEDIATES))
# Use a dynamic predicate to make sure the cond isn't constant folded.
return control_flow_ops.cond(math_ops.not_equal(x, -1),
branch_fn, lambda: 0.0)
def _benchmark_defun(self):
"""Benchmarks cond in a defun."""
@function.defun
def cond_fn(x):
return self._create_cond(x)
# Warm up
for _ in range(self.NUM_WARM_UP_ITERS):
cond_fn(0.0)
start_time = time.time()
for _ in range(self.NUM_ITERS):
cond_fn(0.0)
self.report_benchmark(
wall_time=time.time() - start_time,
iters=self.NUM_ITERS)
def _benchmark_graph(self):
"""Benchmarks cond in legacy graph mode."""
with context.graph_mode():
with ops.Graph().as_default():
x = array_ops.placeholder(dtypes.float32)
cond_val = self._create_cond(x)
with session.Session() as sess:
cond_fn = sess.make_callable(cond_val, [x])
# Warm up
for _ in range(self.NUM_WARM_UP_ITERS):
cond_fn(0.0)
start_time = time.time()
for _ in range(self.NUM_ITERS):
cond_fn(0.0)
self.report_benchmark(
wall_time=time.time() - start_time,
iters=self.NUM_ITERS)
def benchmark_cond_v1_defun(self):
old_val = control_flow_util.ENABLE_CONTROL_FLOW_V2
control_flow_util.ENABLE_CONTROL_FLOW_V2 = False
self._benchmark_defun()
control_flow_util.ENABLE_CONTROL_FLOW_V2 = old_val
def benchmark_cond_v2_defun(self):
old_val = control_flow_util.ENABLE_CONTROL_FLOW_V2
control_flow_util.ENABLE_CONTROL_FLOW_V2 = True
self._benchmark_defun()
control_flow_util.ENABLE_CONTROL_FLOW_V2 = old_val
def benchmark_cond_v1_graph(self):
old_val = control_flow_util.ENABLE_CONTROL_FLOW_V2
control_flow_util.ENABLE_CONTROL_FLOW_V2 = False
self._benchmark_graph()
control_flow_util.ENABLE_CONTROL_FLOW_V2 = old_val
def benchmark_cond_v2_graph(self):
old_val = control_flow_util.ENABLE_CONTROL_FLOW_V2
control_flow_util.ENABLE_CONTROL_FLOW_V2 = True
self._benchmark_graph()
control_flow_util.ENABLE_CONTROL_FLOW_V2 = old_val
if __name__ == "__main__":
ops.enable_eager_execution()
test.main()