Previously randn()'s results were cast to np.bool resuling in True being the only value often. Also, check both the 0th and the -1th axis. PiperOrigin-RevId: 308109624 Change-Id: I2b1b8bc6e6111874ad6f33c634d4d8a85c444882
223 lines
8.0 KiB
Python
223 lines
8.0 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Functional tests for Unstack Op."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
from six.moves import xrange # pylint: disable=redefined-builtin
|
|
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import gradient_checker
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
def np_split_squeeze(array, axis):
|
|
axis_len = array.shape[axis]
|
|
return [
|
|
np.squeeze(
|
|
arr, axis=(axis,)) for arr in np.split(
|
|
array, axis_len, axis=axis)
|
|
]
|
|
|
|
|
|
class UnstackOpTest(test.TestCase):
|
|
|
|
def randn(self, shape, dtype):
|
|
data = np.random.randn(*shape)
|
|
if dtype == np.bool:
|
|
return data < 0 # Naive casting yields True with P(1)!
|
|
else:
|
|
return data.astype(dtype)
|
|
|
|
def unstackReference(self, data, axis):
|
|
"""Use numpy primitives to implement unstack equivalent."""
|
|
result = []
|
|
rank = len(data.shape)
|
|
axis = axis + rank if axis < 0 else axis
|
|
for k in range(data.shape[axis]):
|
|
axis = rank + axis if axis < 0 else axis
|
|
# Slice in axis dimension of k'th slice.
|
|
# e.g. if rank=4 k=2, axis=2 then equivalent of data[:,:,2,:]
|
|
# Give error with loop context
|
|
slice_spec = tuple(
|
|
slice(None) if i != axis else k for i in range(rank))
|
|
result.append(data.__getitem__(slice_spec))
|
|
return result
|
|
|
|
def testSimple(self):
|
|
np.random.seed(7)
|
|
for shape in (2,), (3,), (2, 3), (3, 2), (4, 3, 2):
|
|
rank = len(shape)
|
|
for axis in range(-rank, rank):
|
|
for dtype in [
|
|
np.bool, np.float16, np.float32, np.float64, np.uint8, np.int32,
|
|
np.int64
|
|
]:
|
|
data = self.randn(shape, dtype)
|
|
# Convert data to a single tensorflow tensor
|
|
x = constant_op.constant(data)
|
|
|
|
# Unstack into a list of tensors
|
|
ref = self.unstackReference(data, axis)
|
|
cs = array_ops.unstack(x, axis=axis)
|
|
self.assertEqual(type(cs), list)
|
|
self.assertEqual(len(cs), shape[axis])
|
|
for k, c in enumerate(cs):
|
|
with self.subTest(shape=shape, k=k, axis=axis, dtype=dtype):
|
|
self.assertAllEqual(ref[k], self.evaluate(c))
|
|
|
|
def testSimpleGpu(self):
|
|
if not test_util.is_gpu_available():
|
|
self.skipTest('No GPU available')
|
|
|
|
np.random.seed(7)
|
|
with test_util.force_gpu():
|
|
for shape in (2,), (3,), (2, 3), (3, 2), (4, 3, 2):
|
|
rank = len(shape)
|
|
for axis in range(-rank, rank):
|
|
for dtype in [
|
|
np.bool, np.float16, np.float32, np.float64, np.uint8, np.int32,
|
|
np.int64
|
|
]:
|
|
data = self.randn(shape, dtype)
|
|
# Convert data to a single tensorflow tensor
|
|
x = constant_op.constant(data)
|
|
# Unstack into a list of tensors
|
|
ref = self.unstackReference(data, axis)
|
|
cs = array_ops.unstack(x, axis=axis)
|
|
self.assertEqual(type(cs), list)
|
|
self.assertEqual(len(cs), shape[axis])
|
|
for k, c in enumerate(cs):
|
|
# Give error with loop context
|
|
with self.subTest(shape=shape, k=k, axis=axis, dtype=dtype):
|
|
self.assertAllEqual(ref[k], self.evaluate(c))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testGradientsAxis0(self):
|
|
for shape in (2,), (3,), (2, 3), (3, 2), (4, 3, 2):
|
|
data = np.random.randn(*shape)
|
|
shapes = [shape[1:]] * shape[0]
|
|
for i in xrange(shape[0]):
|
|
with self.cached_session():
|
|
x = constant_op.constant(data)
|
|
cs = array_ops.unstack(x, num=shape[0])
|
|
err = gradient_checker.compute_gradient_error(x, shape, cs[i],
|
|
shapes[i])
|
|
self.assertLess(err, 1e-6)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testGradientsAxis1(self):
|
|
for shape in (2, 3), (3, 2), (4, 3, 2):
|
|
data = np.random.randn(*shape)
|
|
out_shape = list(shape)
|
|
del out_shape[1]
|
|
for i in xrange(shape[1]):
|
|
with self.cached_session():
|
|
x = constant_op.constant(data)
|
|
cs = array_ops.unstack(x, num=shape[1], axis=1)
|
|
err = gradient_checker.compute_gradient_error(x, shape, cs[i],
|
|
out_shape)
|
|
self.assertLess(err, 1e-6)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testInferNum(self):
|
|
for shape in (2,), (3,), (2, 3), (3, 2), (4, 3, 2):
|
|
x = array_ops.placeholder(np.float32, shape=shape)
|
|
cs = array_ops.unstack(x)
|
|
self.assertEqual(type(cs), list)
|
|
self.assertEqual(len(cs), shape[0])
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testCannotInferNumFromUnknownShape(self):
|
|
x = array_ops.placeholder(np.float32)
|
|
with self.assertRaisesRegexp(ValueError,
|
|
r'Cannot infer num from shape <unknown>'):
|
|
array_ops.unstack(x)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testUnknownShapeOkWithNum(self):
|
|
x = array_ops.placeholder(np.float32)
|
|
array_ops.unstack(x, num=2)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testCannotInferNumFromNoneShape(self):
|
|
x = array_ops.placeholder(np.float32, shape=(None,))
|
|
with self.assertRaisesRegexp(ValueError,
|
|
r'Cannot infer num from shape \((\?|None),\)'):
|
|
array_ops.unstack(x)
|
|
|
|
def testAgainstNumpy(self):
|
|
# For 1 to 5 dimensions.
|
|
for i in range(1, 6):
|
|
a = np.random.random(np.random.permutation(i) + 1)
|
|
|
|
# For all the possible axis to split it, including negative indices.
|
|
for j in range(-i, i):
|
|
expected = np_split_squeeze(a, j)
|
|
|
|
actual_unstack = self.evaluate(array_ops.unstack(a, axis=j))
|
|
|
|
self.assertAllEqual(expected, actual_unstack)
|
|
|
|
def testAxis0Default(self):
|
|
a = constant_op.constant([[1, 2, 3], [4, 5, 6]], name='a')
|
|
unstacked = self.evaluate(array_ops.unstack(a))
|
|
|
|
self.assertEqual(len(unstacked), 2)
|
|
self.assertAllEqual(unstacked[0], [1, 2, 3])
|
|
self.assertAllEqual(unstacked[1], [4, 5, 6])
|
|
|
|
def testAxisOutOfRange(self):
|
|
a = constant_op.constant([[1, 2, 3], [4, 5, 6]], name='a')
|
|
with self.assertRaisesRegexp(ValueError, r'axis = 2 not in \[-2, 2\)'):
|
|
array_ops.unstack(a, axis=2)
|
|
|
|
def testAxisOutOfNegativeRange(self):
|
|
a = constant_op.constant([[1, 2, 3], [4, 5, 6]], name='a')
|
|
with self.assertRaisesRegexp(ValueError, r'axis = -3 not in \[-2, 2\)'):
|
|
array_ops.unstack(a, axis=-3)
|
|
|
|
def testZeroLengthDim(self):
|
|
x = array_ops.zeros(shape=(0, 1, 2))
|
|
y = self.evaluate(array_ops.unstack(x, axis=1)[0])
|
|
self.assertEqual(y.shape, (0, 2))
|
|
|
|
def testComplexGpu(self):
|
|
if not test_util.is_gpu_available():
|
|
self.skipTest('No GPU available')
|
|
|
|
np.random.seed(7)
|
|
with test_util.force_gpu():
|
|
for shape in (2,), (3,), (2, 3), (3, 2), (4, 3, 2):
|
|
for dtype in [np.complex64, np.complex128]:
|
|
data = np.random.randn(*shape).astype(dtype)
|
|
# Convert data to a single tensorflow tensor
|
|
x = constant_op.constant(data)
|
|
# Unstack into a list of tensors
|
|
cs = array_ops.unstack(x, num=shape[0])
|
|
self.assertEqual(type(cs), list)
|
|
self.assertEqual(len(cs), shape[0])
|
|
cs = [self.evaluate(c) for c in cs]
|
|
self.assertAllEqual(cs, data)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test.main()
|