139 lines
5.0 KiB
Python
139 lines
5.0 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for Softplus and SoftplusGrad."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.ops import gradient_checker
|
|
from tensorflow.python.ops import gradients_impl
|
|
from tensorflow.python.ops import nn_ops
|
|
import tensorflow.python.ops.nn_grad # pylint: disable=unused-import
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
class SoftplusTest(test.TestCase):
|
|
|
|
def _npSoftplus(self, np_features):
|
|
np_features = np.asarray(np_features)
|
|
zero = np.asarray(0).astype(np_features.dtype)
|
|
return np.logaddexp(zero, np_features)
|
|
|
|
def _testSoftplus(self, np_features, use_gpu=False):
|
|
np_softplus = self._npSoftplus(np_features)
|
|
with self.cached_session(use_gpu=use_gpu):
|
|
softplus = nn_ops.softplus(np_features)
|
|
tf_softplus = self.evaluate(softplus)
|
|
self.assertAllCloseAccordingToType(np_softplus, tf_softplus)
|
|
self.assertTrue(np.all(tf_softplus > 0))
|
|
self.assertShapeEqual(np_softplus, softplus)
|
|
|
|
def testNumbers(self):
|
|
for t in [np.float16, np.float32, np.float64]:
|
|
self._testSoftplus(
|
|
np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t),
|
|
use_gpu=False)
|
|
self._testSoftplus(
|
|
np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t),
|
|
use_gpu=True)
|
|
log_eps = np.log(np.finfo(t).eps)
|
|
one = t(1)
|
|
ten = t(10)
|
|
self._testSoftplus(
|
|
[
|
|
log_eps, log_eps - one, log_eps + one, log_eps - ten,
|
|
log_eps + ten, -log_eps, -log_eps - one, -log_eps + one,
|
|
-log_eps - ten, -log_eps + ten
|
|
],
|
|
use_gpu=False)
|
|
self._testSoftplus(
|
|
[
|
|
log_eps, log_eps - one, log_eps + one, log_eps - ten,
|
|
log_eps + ten - log_eps, -log_eps - one, -log_eps + one,
|
|
-log_eps - ten, -log_eps + ten
|
|
],
|
|
use_gpu=True)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testGradient(self):
|
|
with self.cached_session():
|
|
x = constant_op.constant(
|
|
[-0.9, -0.7, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9],
|
|
shape=[2, 5],
|
|
name="x")
|
|
y = nn_ops.softplus(x, name="softplus")
|
|
x_init = np.asarray(
|
|
[[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]],
|
|
dtype=np.float32,
|
|
order="F")
|
|
err = gradient_checker.compute_gradient_error(
|
|
x, [2, 5], y, [2, 5], x_init_value=x_init)
|
|
print("softplus (float) gradient err = ", err)
|
|
self.assertLess(err, 1e-4)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testGradGrad(self):
|
|
with self.cached_session():
|
|
x = constant_op.constant(
|
|
[-0.9, -0.7, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9],
|
|
shape=[2, 5],
|
|
name="x")
|
|
y = nn_ops.softplus(x, name="softplus")
|
|
(grad,) = gradients_impl.gradients(y, x)
|
|
x_init = np.asarray(
|
|
[[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]],
|
|
dtype=np.float32,
|
|
order="F")
|
|
err = gradient_checker.compute_gradient_error(
|
|
x, [2, 5], grad, [2, 5], x_init_value=x_init)
|
|
print("softplus (float) gradient of gradient err = ", err)
|
|
self.assertLess(err, 5e-5)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testGradGradGrad(self):
|
|
with self.cached_session():
|
|
x = constant_op.constant(
|
|
[-0.9, -0.7, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9],
|
|
shape=[2, 5],
|
|
name="x")
|
|
y = nn_ops.softplus(x, name="softplus")
|
|
(grad,) = gradients_impl.gradients(y, x)
|
|
(grad_grad,) = gradients_impl.gradients(grad, x)
|
|
x_init = np.asarray(
|
|
[[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]],
|
|
dtype=np.float32,
|
|
order="F")
|
|
err = gradient_checker.compute_gradient_error(
|
|
x, [2, 5], grad_grad, [2, 5], x_init_value=x_init)
|
|
print("softplus (float) third-order gradient err = ", err)
|
|
self.assertLess(err, 5e-5)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testNoInts(self):
|
|
with self.cached_session():
|
|
with self.assertRaisesRegexp(
|
|
TypeError,
|
|
"'features' has DataType int32 not in list of allowed values"):
|
|
nn_ops.softplus(constant_op.constant(42)).eval()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|