STT-tensorflow/tensorflow/python/kernel_tests/softplus_op_test.py
Gaurav Jain 24f578cd66 Add @run_deprecated_v1 annotation to tests failing in v2
PiperOrigin-RevId: 223422907
2018-11-29 15:43:25 -08:00

139 lines
5.0 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for Softplus and SoftplusGrad."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import test_util
from tensorflow.python.ops import gradient_checker
from tensorflow.python.ops import gradients_impl
from tensorflow.python.ops import nn_ops
import tensorflow.python.ops.nn_grad # pylint: disable=unused-import
from tensorflow.python.platform import test
class SoftplusTest(test.TestCase):
def _npSoftplus(self, np_features):
np_features = np.asarray(np_features)
zero = np.asarray(0).astype(np_features.dtype)
return np.logaddexp(zero, np_features)
def _testSoftplus(self, np_features, use_gpu=False):
np_softplus = self._npSoftplus(np_features)
with self.cached_session(use_gpu=use_gpu):
softplus = nn_ops.softplus(np_features)
tf_softplus = self.evaluate(softplus)
self.assertAllCloseAccordingToType(np_softplus, tf_softplus)
self.assertTrue(np.all(tf_softplus > 0))
self.assertShapeEqual(np_softplus, softplus)
def testNumbers(self):
for t in [np.float16, np.float32, np.float64]:
self._testSoftplus(
np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t),
use_gpu=False)
self._testSoftplus(
np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t),
use_gpu=True)
log_eps = np.log(np.finfo(t).eps)
one = t(1)
ten = t(10)
self._testSoftplus(
[
log_eps, log_eps - one, log_eps + one, log_eps - ten,
log_eps + ten, -log_eps, -log_eps - one, -log_eps + one,
-log_eps - ten, -log_eps + ten
],
use_gpu=False)
self._testSoftplus(
[
log_eps, log_eps - one, log_eps + one, log_eps - ten,
log_eps + ten - log_eps, -log_eps - one, -log_eps + one,
-log_eps - ten, -log_eps + ten
],
use_gpu=True)
@test_util.run_deprecated_v1
def testGradient(self):
with self.cached_session():
x = constant_op.constant(
[-0.9, -0.7, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9],
shape=[2, 5],
name="x")
y = nn_ops.softplus(x, name="softplus")
x_init = np.asarray(
[[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]],
dtype=np.float32,
order="F")
err = gradient_checker.compute_gradient_error(
x, [2, 5], y, [2, 5], x_init_value=x_init)
print("softplus (float) gradient err = ", err)
self.assertLess(err, 1e-4)
@test_util.run_deprecated_v1
def testGradGrad(self):
with self.cached_session():
x = constant_op.constant(
[-0.9, -0.7, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9],
shape=[2, 5],
name="x")
y = nn_ops.softplus(x, name="softplus")
(grad,) = gradients_impl.gradients(y, x)
x_init = np.asarray(
[[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]],
dtype=np.float32,
order="F")
err = gradient_checker.compute_gradient_error(
x, [2, 5], grad, [2, 5], x_init_value=x_init)
print("softplus (float) gradient of gradient err = ", err)
self.assertLess(err, 5e-5)
@test_util.run_deprecated_v1
def testGradGradGrad(self):
with self.cached_session():
x = constant_op.constant(
[-0.9, -0.7, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9],
shape=[2, 5],
name="x")
y = nn_ops.softplus(x, name="softplus")
(grad,) = gradients_impl.gradients(y, x)
(grad_grad,) = gradients_impl.gradients(grad, x)
x_init = np.asarray(
[[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]],
dtype=np.float32,
order="F")
err = gradient_checker.compute_gradient_error(
x, [2, 5], grad_grad, [2, 5], x_init_value=x_init)
print("softplus (float) third-order gradient err = ", err)
self.assertLess(err, 5e-5)
@test_util.run_deprecated_v1
def testNoInts(self):
with self.cached_session():
with self.assertRaisesRegexp(
TypeError,
"'features' has DataType int32 not in list of allowed values"):
nn_ops.softplus(constant_op.constant(42)).eval()
if __name__ == "__main__":
test.main()