We were missing a bfloat16 kernel for LogSoftMax and a double kernel on the GPU. PiperOrigin-RevId: 314646942 Change-Id: Ifb235609c129f373d4ba30b698f8d906596627fe
287 lines
11 KiB
Python
287 lines
11 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for SoftmaxOp and LogSoftmaxOp."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import errors_impl
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.ops import nn_ops
|
|
from tensorflow.python.platform import test
|
|
from tensorflow.python.platform import tf_logging as logging
|
|
|
|
|
|
class SoftmaxTest(test.TestCase):
|
|
|
|
def _npSoftmax(self, features, dim=-1, log=False):
|
|
if dim == -1:
|
|
dim = len(features.shape) - 1
|
|
one_only_on_dim = list(features.shape)
|
|
one_only_on_dim[dim] = 1
|
|
is_fp16 = features.dtype == np.float16
|
|
if is_fp16:
|
|
# Do the compute in fp32 and cast the input back to fp32.
|
|
features = features.astype(np.float32)
|
|
e = np.exp(features - np.reshape(
|
|
np.amax(
|
|
features, axis=dim), one_only_on_dim))
|
|
softmax = e / np.reshape(np.sum(e, axis=dim), one_only_on_dim)
|
|
if log:
|
|
res = np.log(softmax)
|
|
else:
|
|
res = softmax
|
|
if is_fp16:
|
|
res = res.astype(np.float16)
|
|
return res
|
|
|
|
def _testSoftmax(self,
|
|
np_features,
|
|
dim=-1,
|
|
log=False,
|
|
dtype=None,
|
|
use_gpu=False):
|
|
# A previous version of the code checked the op name rather than the op type
|
|
# to distinguish between log and non-log. Use an arbitrary name to catch
|
|
# this bug in future.
|
|
name = "arbitrary"
|
|
np_softmax = self._npSoftmax(np_features, dim=dim, log=log)
|
|
with self.cached_session(use_gpu=use_gpu):
|
|
if dtype is not None:
|
|
np_features = math_ops.cast(np_features, dtype=dtype)
|
|
|
|
if log:
|
|
tf_softmax = nn_ops.log_softmax(np_features, axis=dim, name=name)
|
|
else:
|
|
tf_softmax = nn_ops.softmax(np_features, axis=dim, name=name)
|
|
out = self.evaluate(tf_softmax)
|
|
self.assertAllCloseAccordingToType(np_softmax, out)
|
|
self.assertShapeEqual(np_softmax, tf_softmax)
|
|
if not log and dtype is None:
|
|
# Bonus check: the softmaxes should add to one in dimension dim.
|
|
sum_along_dim = np.sum(out, axis=dim)
|
|
self.assertAllCloseAccordingToType(
|
|
np.ones(sum_along_dim.shape), sum_along_dim)
|
|
|
|
def _testAll(self, features, dtype=None):
|
|
self._testSoftmax(features, dtype=dtype, use_gpu=True)
|
|
self._testSoftmax(features, dtype=dtype, log=True, use_gpu=True)
|
|
self._testOverflow(use_gpu=True)
|
|
|
|
def testNpSoftmax(self):
|
|
features = [[1., 1., 1., 1.], [1., 2., 3., 4.]]
|
|
# Batch 0: All exps are 1. The expected result is
|
|
# Softmaxes = [0.25, 0.25, 0.25, 0.25]
|
|
# LogSoftmaxes = [-1.386294, -1.386294, -1.386294, -1.386294]
|
|
#
|
|
# Batch 1:
|
|
# exps = [1., 2.718, 7.389, 20.085]
|
|
# sum = 31.192
|
|
# Softmaxes = exps / sum = [0.0320586, 0.08714432, 0.23688282, 0.64391426]
|
|
# LogSoftmaxes = [-3.44019 , -2.44019 , -1.44019 , -0.44019]
|
|
np_sm = self._npSoftmax(np.array(features))
|
|
self.assertAllClose(
|
|
np.array([[0.25, 0.25, 0.25, 0.25],
|
|
[0.0320586, 0.08714432, 0.23688282, 0.64391426]]),
|
|
np_sm,
|
|
rtol=1.e-5,
|
|
atol=1.e-5)
|
|
np_lsm = self._npSoftmax(np.array(features), log=True)
|
|
self.assertAllClose(
|
|
np.array([[-1.386294, -1.386294, -1.386294, -1.386294],
|
|
[-3.4401897, -2.4401897, -1.4401897, -0.4401897]]),
|
|
np_lsm,
|
|
rtol=1.e-5,
|
|
atol=1.e-5)
|
|
|
|
def _testOverflow(self, use_gpu=False):
|
|
if use_gpu:
|
|
type = np.float32 # pylint: disable=redefined-builtin
|
|
else:
|
|
type = np.float64 # pylint: disable=redefined-builtin
|
|
max = np.finfo(type).max # pylint: disable=redefined-builtin
|
|
features = np.array([[1., 1., 1., 1.], [max, 1., 2., 3.]]).astype(type)
|
|
with self.cached_session(use_gpu=use_gpu):
|
|
tf_log_softmax = nn_ops.log_softmax(features)
|
|
out = self.evaluate(tf_log_softmax)
|
|
self.assertAllClose(
|
|
np.array([[-1.386294, -1.386294, -1.386294, -1.386294],
|
|
[0, -max, -max, -max]]),
|
|
out,
|
|
rtol=1.e-5,
|
|
atol=1.e-5)
|
|
|
|
def testFloat(self):
|
|
self._testAll(
|
|
np.array([[1., 1., 1., 1.], [1., 2., 3., 4.]]).astype(np.float32))
|
|
|
|
@unittest.skipUnless(test.is_built_with_gpu_support(),
|
|
"Test only applicable when running on GPUs")
|
|
def testFloatGPU(self):
|
|
if test.is_gpu_available(cuda_only=True):
|
|
rows = [2**x + np.random.randint(0, 16) for x in range(1, 4)]
|
|
cols = [2**x + np.random.randint(0, 16) for x in range(1, 4)]
|
|
for row, col in zip(rows, cols):
|
|
logging.info("Testing softmax float dtype in shape [%d, %d]", row, col)
|
|
data = np.random.rand(row, col)
|
|
self._testAll(data.astype(np.float32))
|
|
|
|
def testHalf(self):
|
|
self._testAll(
|
|
np.array([[1., 1., 1., 1.], [1., 2., 3., 4.]]).astype(np.float16))
|
|
|
|
@unittest.skipUnless(test.is_built_with_gpu_support(),
|
|
"Test only applicable when running on GPUs")
|
|
def testHalfGPU(self):
|
|
if test.is_gpu_available(cuda_only=True):
|
|
rows = [2**x + np.random.randint(0, 16) for x in range(1, 4)]
|
|
cols = [2**x + np.random.randint(0, 16) for x in range(1, 4)]
|
|
for row, col in zip(rows, cols):
|
|
logging.info("Testing softmax half dtype in shape [%d, %d]", row, col)
|
|
data = np.random.rand(row, col)
|
|
self._testAll(data.astype(np.float16))
|
|
|
|
def testDouble(self):
|
|
self._testSoftmax(
|
|
np.array([[1., 1., 1., 1.], [1., 2., 3., 4.]]).astype(np.float64))
|
|
self._testOverflow()
|
|
|
|
@unittest.skipUnless(test.is_built_with_gpu_support(),
|
|
"Test only applicable when running on GPUs")
|
|
def testDoubleGPU(self):
|
|
if test.is_gpu_available(cuda_only=True):
|
|
rows = [2**x + np.random.randint(0, 16) for x in range(1, 4)]
|
|
cols = [2**x + np.random.randint(0, 16) for x in range(1, 4)]
|
|
for row, col in zip(rows, cols):
|
|
logging.info("Testing softmax float dtype in shape [%d, %d]", row, col)
|
|
data = np.random.rand(row, col)
|
|
self._testAll(data.astype(np.float64))
|
|
|
|
def testBfloat16(self):
|
|
self._testAll(
|
|
np.array([[1., 1., 1., 1.], [1., 2., 3., 4.]]).astype(np.float32),
|
|
dtype=dtypes.bfloat16)
|
|
|
|
def test1DTensorAsInput(self):
|
|
self._testSoftmax(
|
|
np.array([3., 2., 3., 9.]).astype(np.float64), use_gpu=False)
|
|
self._testOverflow(use_gpu=False)
|
|
|
|
def test1DTensorAsInputNoReshape(self):
|
|
self._testSoftmax(
|
|
np.array([3., 2., 3., 9.]).astype(np.float64), use_gpu=False)
|
|
self._testOverflow(use_gpu=False)
|
|
|
|
def test3DTensorAsInput(self):
|
|
self._testSoftmax(
|
|
np.array([[[1., 1., 1., 1.], [1., 2., 3., 4.]],
|
|
[[2., 3., 4., 5.], [6., 7., 8., 9.]],
|
|
[[5., 4., 3., 2.], [1., 2., 3., 4.]]]).astype(np.float32),
|
|
use_gpu=False)
|
|
self._testOverflow(use_gpu=False)
|
|
|
|
def test3DTensorAsInputNoReshape(self):
|
|
self._testSoftmax(
|
|
np.array([[[1., 1., 1., 1.], [1., 2., 3., 4.]],
|
|
[[2., 3., 4., 5.], [6., 7., 8., 9.]],
|
|
[[5., 4., 3., 2.], [1., 2., 3., 4.]]]).astype(np.float32),
|
|
use_gpu=False)
|
|
self._testOverflow(use_gpu=False)
|
|
|
|
def testAlongFirstDimension(self):
|
|
self._testSoftmax(
|
|
np.array([[[1., 1., 1., 1.], [1., 2., 3., 4.]],
|
|
[[2., 3., 4., 5.], [6., 7., 8., 9.]],
|
|
[[5., 4., 3., 2.], [1., 2., 3., 4.]]]).astype(np.float32),
|
|
dim=0,
|
|
use_gpu=False)
|
|
self._testOverflow(use_gpu=False)
|
|
|
|
def testAlongSecondDimension(self):
|
|
self._testSoftmax(
|
|
np.array([[[1., 1., 1., 1.], [1., 2., 3., 4.]],
|
|
[[2., 3., 4., 5.], [6., 7., 8., 9.]],
|
|
[[5., 4., 3., 2.], [1., 2., 3., 4.]]]).astype(np.float32),
|
|
dim=1,
|
|
use_gpu=False)
|
|
self._testOverflow(use_gpu=False)
|
|
|
|
def testAlongNegativeDimension(self):
|
|
self._testSoftmax(
|
|
np.array([[[1., 1., 1., 1.], [1., 2., 3., 4.]],
|
|
[[2., 3., 4., 5.], [6., 7., 8., 9.]],
|
|
[[5., 4., 3., 2.], [1., 2., 3., 4.]]]).astype(np.float32),
|
|
dim=-2,
|
|
use_gpu=False)
|
|
self._testOverflow(use_gpu=False)
|
|
|
|
def testShapeInference(self):
|
|
op = nn_ops.softmax([[[1., 1., 1., 1.], [1., 2., 3., 4.]],
|
|
[[2., 3., 4., 5.], [6., 7., 8., 9.]],
|
|
[[5., 4., 3., 2.], [1., 2., 3., 4.]]])
|
|
self.assertEqual([3, 2, 4], op.get_shape())
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testEmptyInput(self):
|
|
with self.cached_session():
|
|
x = array_ops.placeholder(dtypes.float32, shape=[0, 3])
|
|
self.assertEqual(0, array_ops.size(x).eval())
|
|
# reshape would raise if logits is empty
|
|
with self.assertRaises(errors_impl.InvalidArgumentError):
|
|
nn_ops.softmax(x, axis=0).eval()
|
|
|
|
def testDimTooLarge(self):
|
|
with self.cached_session():
|
|
# Use placeholder to make sure we get runtime error instead of shape
|
|
# inference error.
|
|
dim = array_ops.placeholder_with_default(100, shape=[])
|
|
with self.assertRaises(errors_impl.InvalidArgumentError):
|
|
nn_ops.softmax([1., 2., 3., 4.], axis=dim).eval()
|
|
|
|
def testInvalidAxis(self):
|
|
# Test case for GitHub issue 22793.
|
|
with self.cached_session():
|
|
ones = array_ops.ones(shape=[2, 3])
|
|
with self.assertRaises(errors_impl.InvalidArgumentError):
|
|
nn_ops.softmax(ones, axis=2).eval()
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testLargeDims(self):
|
|
# Make sure that we properly handle large inputs. See
|
|
# https://github.com/tensorflow/tensorflow/issues/4425 for details
|
|
for dims in [129, 256]:
|
|
ones = np.random.rand(dims, dims).astype(np.float32)
|
|
np_softmax = self._npSoftmax(ones)
|
|
|
|
for use_gpu in [True, False]:
|
|
with self.cached_session(use_gpu=use_gpu) as sess:
|
|
x = array_ops.placeholder(dtypes.float32)
|
|
y = nn_ops.softmax(x)
|
|
tf_softmax = sess.run(y, feed_dict={x: ones})
|
|
self.assertAllClose(tf_softmax, np_softmax)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|