STT-tensorflow/tensorflow/python/kernel_tests/signal/test_util.py
Jared Duke f5c5747f13 Re-enable signal kernel tests on py38
PiperOrigin-RevId: 312166420
Change-Id: Ie18cf2e29d8a05d57675ce3e75b06509205a4e61
2020-05-18 15:33:27 -07:00

101 lines
3.8 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test utilities for tf.signal."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.core.protobuf import config_pb2
from tensorflow.lite.python import interpreter
from tensorflow.lite.python import lite
from tensorflow.python.eager import def_function
from tensorflow.python.grappler import tf_optimizer
from tensorflow.python.training import saver
def grappler_optimize(graph, fetches=None, config_proto=None):
"""Tries to optimize the provided graph using grappler.
Args:
graph: A `tf.Graph` instance containing the graph to optimize.
fetches: An optional list of `Tensor`s to fetch (i.e. not optimize away).
Grappler uses the 'train_op' collection to look for fetches, so if not
provided this collection should be non-empty.
config_proto: An optional `tf.compat.v1.ConfigProto` to use when rewriting
the graph.
Returns:
A `tf.compat.v1.GraphDef` containing the rewritten graph.
"""
if config_proto is None:
config_proto = config_pb2.ConfigProto()
config_proto.graph_options.rewrite_options.min_graph_nodes = -1
if fetches is not None:
for fetch in fetches:
graph.add_to_collection('train_op', fetch)
metagraph = saver.export_meta_graph(graph_def=graph.as_graph_def())
return tf_optimizer.OptimizeGraph(config_proto, metagraph)
def tflite_convert(fn, input_templates):
"""Converts the provided fn to tf.lite model.
Args:
fn: A callable that expects a list of inputs like input_templates that
returns a tensor or structure of tensors.
input_templates: A list of Tensors, ndarrays or TensorSpecs describing the
inputs that fn expects. The actual values of the Tensors or ndarrays are
unused.
Returns:
The serialized tf.lite model.
"""
fn = def_function.function(fn)
concrete_func = fn.get_concrete_function(*input_templates)
converter = lite.TFLiteConverterV2([concrete_func])
return converter.convert()
def evaluate_tflite_model(tflite_model, input_ndarrays):
"""Evaluates the provided tf.lite model with the given input ndarrays.
Args:
tflite_model: bytes. The serialized tf.lite model.
input_ndarrays: A list of NumPy arrays to feed as input to the model.
Returns:
A list of ndarrays produced by the model.
Raises:
ValueError: If the number of input arrays does not match the number of
inputs the model expects.
"""
the_interpreter = interpreter.Interpreter(model_content=tflite_model)
the_interpreter.allocate_tensors()
input_details = the_interpreter.get_input_details()
output_details = the_interpreter.get_output_details()
if len(input_details) != len(input_ndarrays):
raise ValueError('Wrong number of inputs: provided=%s, '
'input_details=%s output_details=%s' % (
input_ndarrays, input_details, output_details))
for input_tensor, data in zip(input_details, input_ndarrays):
the_interpreter.set_tensor(input_tensor['index'], data)
the_interpreter.invoke()
return [the_interpreter.get_tensor(details['index'])
for details in output_details]