STT-tensorflow/tensorflow/python/kernel_tests/scatter_ops_test.py
2020-01-16 14:36:52 +09:00

341 lines
11 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow.ops.tf.scatter."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import test_util
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import variables
from tensorflow.python.platform import test
def _AsType(v, vtype):
return v.astype(vtype) if isinstance(v, np.ndarray) else vtype(v)
def _NumpyAdd(ref, indices, updates):
# Since numpy advanced assignment does not support repeated indices,
# we run a simple loop to perform scatter_add.
for i, indx in np.ndenumerate(indices):
ref[indx] += updates[i]
def _NumpyAddScalar(ref, indices, update):
for _, indx in np.ndenumerate(indices):
ref[indx] += update
def _NumpySub(ref, indices, updates):
for i, indx in np.ndenumerate(indices):
ref[indx] -= updates[i]
def _NumpySubScalar(ref, indices, update):
for _, indx in np.ndenumerate(indices):
ref[indx] -= update
def _NumpyMul(ref, indices, updates):
for i, indx in np.ndenumerate(indices):
ref[indx] *= updates[i]
def _NumpyMulScalar(ref, indices, update):
for _, indx in np.ndenumerate(indices):
ref[indx] *= update
def _NumpyDiv(ref, indices, updates):
for i, indx in np.ndenumerate(indices):
ref[indx] /= updates[i]
def _NumpyDivScalar(ref, indices, update):
for _, indx in np.ndenumerate(indices):
ref[indx] /= update
def _NumpyMin(ref, indices, updates):
for i, indx in np.ndenumerate(indices):
ref[indx] = np.minimum(ref[indx], updates[i])
def _NumpyMinScalar(ref, indices, update):
for _, indx in np.ndenumerate(indices):
ref[indx] = np.minimum(ref[indx], update)
def _NumpyMax(ref, indices, updates):
for i, indx in np.ndenumerate(indices):
ref[indx] = np.maximum(ref[indx], updates[i])
def _NumpyMaxScalar(ref, indices, update):
for _, indx in np.ndenumerate(indices):
ref[indx] = np.maximum(ref[indx], update)
def _NumpyUpdate(ref, indices, updates):
for i, indx in np.ndenumerate(indices):
ref[indx] = updates[i]
def _NumpyUpdateScalar(ref, indices, update):
for _, indx in np.ndenumerate(indices):
ref[indx] = update
_TF_OPS_TO_NUMPY = {
state_ops.scatter_update: _NumpyUpdate,
state_ops.scatter_add: _NumpyAdd,
state_ops.scatter_sub: _NumpySub,
state_ops.scatter_mul: _NumpyMul,
state_ops.scatter_div: _NumpyDiv,
state_ops.scatter_min: _NumpyMin,
state_ops.scatter_max: _NumpyMax,
}
_TF_OPS_TO_NUMPY_SCALAR = {
state_ops.scatter_update: _NumpyUpdateScalar,
state_ops.scatter_add: _NumpyAddScalar,
state_ops.scatter_sub: _NumpySubScalar,
state_ops.scatter_mul: _NumpyMulScalar,
state_ops.scatter_div: _NumpyDivScalar,
state_ops.scatter_min: _NumpyMinScalar,
state_ops.scatter_max: _NumpyMaxScalar,
}
class ScatterTest(test.TestCase):
def _VariableRankTest(self,
tf_scatter,
vtype,
itype,
repeat_indices=False,
updates_are_scalar=False):
np.random.seed(8)
with self.cached_session(use_gpu=True):
for indices_shape in (), (2,), (3, 7), (3, 4, 7):
for extra_shape in (), (5,), (5, 9):
# Generate random indices with no duplicates for easy numpy comparison
size = np.prod(indices_shape, dtype=itype)
first_dim = 3 * size
indices = np.arange(first_dim)
np.random.shuffle(indices)
indices = indices[:size]
if size > 1 and repeat_indices:
# Add some random repeats.
indices = indices[:size // 2]
for _ in range(size - size // 2):
# Randomly append some repeats.
indices = np.append(indices,
indices[np.random.randint(size // 2)])
np.random.shuffle(indices)
indices = indices.reshape(indices_shape)
if updates_are_scalar:
updates = _AsType(np.random.randn(), vtype)
else:
updates = _AsType(
np.random.randn(*(indices_shape + extra_shape)), vtype)
# Clips small values to avoid division by zero.
def clip_small_values(x):
threshold = 1e-4
sign = np.sign(x)
if isinstance(x, np.int32):
threshold = 1
sign = np.random.choice([-1, 1])
return threshold * sign if np.abs(x) < threshold else x
updates = np.vectorize(clip_small_values)(updates)
old = _AsType(np.random.randn(*((first_dim,) + extra_shape)), vtype)
# Scatter via numpy
new = old.copy()
if updates_are_scalar:
np_scatter = _TF_OPS_TO_NUMPY_SCALAR[tf_scatter]
else:
np_scatter = _TF_OPS_TO_NUMPY[tf_scatter]
np_scatter(new, indices, updates)
# Scatter via tensorflow
ref = variables.Variable(old)
self.evaluate(ref.initializer)
self.evaluate(tf_scatter(ref, indices, updates))
self.assertAllClose(self.evaluate(ref), new)
def _VariableRankTests(self,
tf_scatter,
repeat_indices=False,
updates_are_scalar=False):
vtypes = [np.float32, np.float64]
if tf_scatter != state_ops.scatter_div:
vtypes.append(np.int32)
for vtype in vtypes:
for itype in (np.int32, np.int64):
self._VariableRankTest(tf_scatter, vtype, itype, repeat_indices,
updates_are_scalar)
def testVariableRankUpdate(self):
self._VariableRankTests(state_ops.scatter_update, False)
def testVariableRankAdd(self):
self._VariableRankTests(state_ops.scatter_add, False)
def testVariableRankSub(self):
self._VariableRankTests(state_ops.scatter_sub, False)
def testVariableRankMul(self):
self._VariableRankTests(state_ops.scatter_mul, False)
def testVariableRankDiv(self):
self._VariableRankTests(state_ops.scatter_div, False)
def testVariableRankMin(self):
self._VariableRankTests(state_ops.scatter_min, False)
def testVariableRankMax(self):
self._VariableRankTests(state_ops.scatter_max, False)
def testRepeatIndicesAdd(self):
self._VariableRankTests(state_ops.scatter_add, True)
def testRepeatIndicesSub(self):
self._VariableRankTests(state_ops.scatter_sub, True)
def testRepeatIndicesMul(self):
self._VariableRankTests(state_ops.scatter_mul, True)
def testRepeatIndicesDiv(self):
self._VariableRankTests(state_ops.scatter_div, True)
def testRepeatIndicesMin(self):
self._VariableRankTests(state_ops.scatter_min, True)
def testRepeatIndicesMax(self):
self._VariableRankTests(state_ops.scatter_max, True)
def testVariableRankUpdateScalar(self):
self._VariableRankTests(state_ops.scatter_update, False, True)
def testVariableRankAddScalar(self):
self._VariableRankTests(state_ops.scatter_add, False, True)
def testVariableRankSubScalar(self):
self._VariableRankTests(state_ops.scatter_sub, False, True)
def testVariableRankMulScalar(self):
self._VariableRankTests(state_ops.scatter_mul, False, True)
def testVariableRankDivScalar(self):
self._VariableRankTests(state_ops.scatter_div, False, True)
def testVariableRankMinScalar(self):
self._VariableRankTests(state_ops.scatter_min, False, True)
def testVariableRankMaxScalar(self):
self._VariableRankTests(state_ops.scatter_max, False, True)
def testRepeatIndicesAddScalar(self):
self._VariableRankTests(state_ops.scatter_add, True, True)
def testRepeatIndicesSubScalar(self):
self._VariableRankTests(state_ops.scatter_sub, True, True)
def testRepeatIndicesMulScalar(self):
self._VariableRankTests(state_ops.scatter_mul, True, True)
def testRepeatIndicesDivScalar(self):
self._VariableRankTests(state_ops.scatter_div, True, True)
def testRepeatIndicesMinScalar(self):
self._VariableRankTests(state_ops.scatter_min, True, True)
def testRepeatIndicesMaxScalar(self):
self._VariableRankTests(state_ops.scatter_max, True, True)
def testBooleanScatterUpdate(self):
if not test.is_gpu_available():
with self.session(use_gpu=False):
var = variables.Variable([True, False])
update0 = state_ops.scatter_update(var, 1, True)
update1 = state_ops.scatter_update(
var, constant_op.constant(
0, dtype=dtypes.int64), False)
self.evaluate(var.initializer)
self.evaluate([update0, update1])
self.assertAllEqual([False, True], self.evaluate(var))
def testScatterOutOfRangeCpu(self):
for op, _ in _TF_OPS_TO_NUMPY.items():
params = np.array([1, 2, 3, 4, 5, 6]).astype(np.float32)
updates = np.array([-3, -4, -5]).astype(np.float32)
if not test.is_gpu_available():
with self.session(use_gpu=False):
ref = variables.Variable(params)
self.evaluate(ref.initializer)
# Indices all in range, no problem.
indices = np.array([2, 0, 5])
self.evaluate(op(ref, indices, updates))
# Test some out of range errors.
indices = np.array([-1, 0, 5])
with self.assertRaisesOpError(
r'indices\[0\] = -1 is not in \[0, 6\)'):
self.evaluate(op(ref, indices, updates))
indices = np.array([2, 0, 6])
with self.assertRaisesOpError(r'indices\[2\] = 6 is not in \[0, 6\)'):
self.evaluate(op(ref, indices, updates))
# TODO(fpmc): Re-enable this test when gpu_pip test actually runs on a GPU.
def _disabledTestScatterOutOfRangeGpu(self):
if test.is_gpu_available():
return
for op, _ in _TF_OPS_TO_NUMPY.items():
params = np.array([1, 2, 3, 4, 5, 6]).astype(np.float32)
updates = np.array([-3, -4, -5]).astype(np.float32)
# With GPU, the code ignores indices that are out of range.
# We don't test the implementation; just test there's no failures.
with test_util.force_gpu():
ref = variables.Variable(params)
self.evaluate(ref.initializer)
# Indices all in range, no problem.
indices = np.array([2, 0, 5])
self.evaluate(op(ref, indices, updates))
# Indices out of range should not fail.
indices = np.array([-1, 0, 5])
self.evaluate(op(ref, indices, updates))
indices = np.array([2, 0, 6])
self.evaluate(op(ref, indices, updates))
if __name__ == '__main__':
test.main()