STT-tensorflow/tensorflow/python/kernel_tests/scan_ops_test.py
A. Unique TensorFlower 9f6937e0d1 [TF:XLA] Attach useful information to disabled XLA tests.
PiperOrigin-RevId: 232669090
2019-02-06 07:19:00 -08:00

316 lines
10 KiB
Python

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functional tests for scan ops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import errors_impl
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.ops import gradient_checker
from tensorflow.python.ops import math_ops
from tensorflow.python.platform import test
def numpy_reverse(x, axis):
length = len(x.shape)
if axis < 0:
axis = length + axis
ix = [
slice(None, None, -1) if i == axis else slice(None) for i in range(length)
]
return x[ix]
def handle_options(func, x, axis, exclusive, reverse):
"""Adds tf options to numpy scan ops."""
length = len(x.shape)
if axis < 0:
axis = length + axis
if reverse:
x = numpy_reverse(x, axis)
if exclusive:
ix_head = [slice(0, 1) if i == axis else slice(None) for i in range(length)]
ix_init = [
slice(0, -1) if i == axis else slice(None) for i in range(length)
]
if func == np.cumsum:
init = np.zeros_like(x[ix_head])
elif func == np.cumprod:
init = np.ones_like(x[ix_head])
else:
raise ValueError("Unknown scan function.")
x = np.concatenate([init, func(x[ix_init], axis)], axis=axis)
else:
x = func(x, axis=axis)
if reverse:
x = numpy_reverse(x, axis)
return x
class CumsumTest(test.TestCase):
valid_dtypes = [
np.int32, np.int64, np.float16, np.float32, np.float64, np.complex64,
np.complex128
]
def _compare(self, x, axis, exclusive, reverse):
np_out = handle_options(np.cumsum, x, axis, exclusive, reverse)
with self.cached_session(use_gpu=True):
tf_out = math_ops.cumsum(x, axis, exclusive, reverse).eval()
self.assertAllClose(np_out, tf_out)
def _compareAll(self, x, axis):
for exclusive in [True, False]:
for reverse in [True, False]:
self._compare(x, axis, exclusive, reverse)
@test_util.run_deprecated_v1
def testEmpty(self):
for dtype in self.valid_dtypes:
x = np.zeros([0]).astype(dtype)
for axis in (-1, 0):
self._compareAll(x, axis)
@test_util.run_deprecated_v1
def testAxisType(self):
for dtype in self.valid_dtypes:
x = np.arange(1, 6).reshape([5]).astype(dtype)
for axis_dtype in [dtypes.int64, dtypes.int32]:
with self.cached_session(use_gpu=True):
axis = constant_op.constant(0, axis_dtype)
tf_out = math_ops.cumsum(x, axis).eval()
@test_util.run_deprecated_v1
def test1D(self):
for dtype in self.valid_dtypes:
x = np.arange(1, 6).reshape([5]).astype(dtype)
for axis in (-1, 0):
self._compareAll(x, axis)
@test_util.run_deprecated_v1
def test2D(self):
for dtype in self.valid_dtypes:
x = np.arange(0, 10).reshape([2, 5]).astype(dtype)
for axis in (-2, -1, 0, 1):
self._compareAll(x, axis)
@test_util.run_deprecated_v1
def test3D(self):
for dtype in self.valid_dtypes:
x = np.arange(0, 20).reshape([2, 2, 5]).astype(dtype)
for axis in (-3, -2, -1, 0, 1, 2):
self._compareAll(x, axis)
@test_util.run_deprecated_v1
def test6D(self):
for dtype in self.valid_dtypes:
x = np.arange(1, 145).reshape([2, 2, 3, 3, 2, 2]).astype(dtype)
for axis in range(-6, 6, 3):
self._compareAll(x, axis)
@test_util.run_deprecated_v1
@test_util.disable_xla("b/123860949") # The computation is constant folded
def testLarge(self):
for dtype in self.valid_dtypes:
x = np.ones([1000000], dtype=dtype) / 1024
self._compareAll(x, 0)
def testInvalidAxis(self):
x = np.arange(0, 10).reshape([2, 5]).astype(np.float32)
input_tensor = ops.convert_to_tensor(x)
with self.session(use_gpu=True):
with self.assertRaisesWithPredicateMatch(
errors_impl.InvalidArgumentError,
lambda e: "Expected scan axis in the range [-2, 2)" in str(e)):
math_ops.cumsum(input_tensor, -3).eval()
with self.assertRaisesWithPredicateMatch(
errors_impl.InvalidArgumentError,
lambda e: "Expected scan axis in the range [-2, 2)" in str(e)):
math_ops.cumsum(input_tensor, 2).eval()
with self.assertRaisesWithPredicateMatch(
errors_impl.InvalidArgumentError,
lambda e: "axis must be a scalar" in str(e)):
math_ops.cumsum(input_tensor, [0]).eval()
def _compareGradient(self, shape, axis, exclusive, reverse):
x = np.arange(0, 50).reshape(shape).astype(np.float64)
with self.cached_session(use_gpu=True):
t = ops.convert_to_tensor(x)
result = math_ops.cumsum(t, axis, exclusive, reverse)
jacob_t, jacob_n = gradient_checker.compute_gradient(
t, shape, result, shape, x_init_value=x, delta=1)
self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8)
@test_util.run_deprecated_v1
def testGradient(self):
for axis in (-1, 0):
self._compareGradient([50], axis, False, False)
@test_util.run_deprecated_v1
def testGradientReverse(self):
for axis in (-1, 0):
self._compareGradient([50], axis, False, True)
@test_util.run_deprecated_v1
def testGradientExclusive(self):
for axis in (-1, 0):
self._compareGradient([50], axis, True, False)
@test_util.run_deprecated_v1
def testGradientExclusiveReverse(self):
for axis in (-1, 0):
self._compareGradient([50], axis, True, True)
@test_util.run_deprecated_v1
def testGradient2D(self):
for axis in (-1, 0, 1):
for exclusive in [True, False]:
for reverse in [True, False]:
self._compareGradient([5, 10], axis, exclusive, reverse)
class CumprodTest(test.TestCase):
valid_dtypes = [
np.int32, np.int64, np.float16, np.float32, np.float64, np.complex64,
np.complex128
]
def _compare(self, x, axis, exclusive, reverse):
np_out = handle_options(np.cumprod, x, axis, exclusive, reverse)
with self.cached_session(use_gpu=True):
tf_out = math_ops.cumprod(x, axis, exclusive, reverse).eval()
self.assertAllClose(np_out, tf_out)
def _compareAll(self, x, axis):
for exclusive in [True, False]:
for reverse in [True, False]:
self._compare(x, axis, exclusive, reverse)
@test_util.run_deprecated_v1
def testEmpty(self):
for dtype in self.valid_dtypes:
x = np.zeros([0]).astype(dtype)
for axis in (-1, 0):
self._compareAll(x, axis)
@test_util.run_deprecated_v1
def testAxisType(self):
for dtype in self.valid_dtypes:
x = np.arange(1, 6).reshape([5]).astype(dtype)
for axis_dtype in [dtypes.int64, dtypes.int32]:
with self.cached_session(use_gpu=True):
axis = constant_op.constant(0, axis_dtype)
tf_out = math_ops.cumprod(x, axis).eval()
@test_util.run_deprecated_v1
def test1D(self):
for dtype in self.valid_dtypes:
x = np.arange(1, 6).reshape([5]).astype(dtype)
for axis in (-1, 0):
self._compareAll(x, axis)
@test_util.run_deprecated_v1
def test2D(self):
for dtype in self.valid_dtypes:
x = np.arange(1, 11).reshape([2, 5]).astype(dtype)
for axis in (-2, -1, 0, 1):
self._compareAll(x, axis)
@test_util.run_deprecated_v1
def test3D(self):
for dtype in self.valid_dtypes:
x = np.arange(1, 21).reshape([2, 2, 5]).astype(dtype)
for axis in (-3, -2, -1, 0, 1, 2):
self._compareAll(x, axis)
@test_util.run_deprecated_v1
def test6D(self):
for dtype in self.valid_dtypes:
x = np.arange(1, 145).reshape([2, 2, 3, 3, 2, 2]).astype(dtype)
for axis in range(-6, 6, 3):
self._compareAll(x, axis)
def testInvalidAxis(self):
x = np.arange(0, 10).reshape([2, 5]).astype(np.float32)
input_tensor = ops.convert_to_tensor(x)
with self.session(use_gpu=True):
with self.assertRaisesWithPredicateMatch(
errors_impl.InvalidArgumentError,
lambda e: "Expected scan axis in the range [-2, 2)" in str(e)):
math_ops.cumprod(input_tensor, -3).eval()
with self.assertRaisesWithPredicateMatch(
errors_impl.InvalidArgumentError,
lambda e: "Expected scan axis in the range [-2, 2)" in str(e)):
math_ops.cumprod(input_tensor, 2).eval()
with self.assertRaisesWithPredicateMatch(
errors_impl.InvalidArgumentError,
lambda e: "axis must be a scalar" in str(e)):
math_ops.cumprod(input_tensor, [0]).eval()
def _compareGradient(self, shape, axis, exclusive, reverse):
x = np.arange(1, 9).reshape(shape).astype(np.float64)
with self.cached_session(use_gpu=True):
t = ops.convert_to_tensor(x)
result = math_ops.cumprod(t, axis, exclusive, reverse)
jacob_t, jacob_n = gradient_checker.compute_gradient(
t, shape, result, shape, x_init_value=x, delta=1)
self.assertAllClose(jacob_t, jacob_n, rtol=1e-8, atol=1e-8)
@test_util.run_deprecated_v1
def testGradient(self):
for axis in (-1, 0):
self._compareGradient([8], axis, False, False)
@test_util.run_deprecated_v1
def testGradientReverse(self):
for axis in (-1, 0):
self._compareGradient([8], axis, False, True)
@test_util.run_deprecated_v1
def testGradientExclusive(self):
for axis in (-1, 0):
self._compareGradient([8], axis, True, False)
@test_util.run_deprecated_v1
def testGradientExclusiveReverse(self):
for axis in (-1, 0):
self._compareGradient([8], axis, True, True)
@test_util.run_deprecated_v1
def testGradient2D(self):
for axis in (-2, -1, 0, 1):
for exclusive in [True, False]:
for reverse in [True, False]:
self._compareGradient([2, 4], axis, exclusive, reverse)
if __name__ == "__main__":
test.main()