STT-tensorflow/tensorflow/python/kernel_tests/scalar_test.py
A. Unique TensorFlower 271f6bb49d Clean up OpKernel 1.
1. Clean up old code related to legacy scalars and vectors in TensorFlow. This CL does not bump the GrapDef version.
Legacy behavior is allowed for a small number of frequently used kernels and a TODO to fix this in a future CL added.
2. Move OpKernel::MakeShape into tensor_util.{h,cc}. Ideally it should go in TensorShapeUtils, but that would create a cyclical dependence.

The oldest branch of TensorFlow on github is r0.7, which is at GraphDef version 8 already, so this should have no impact on GraphDefs in the wild.

We also changed the scalar test to be strict in open source on 2017-04-03.

PiperOrigin-RevId: 292234389
Change-Id: Iee372607d9b9139d33ba7be5be8b792d9471e0f6
2020-01-29 15:49:57 -08:00

147 lines
4.9 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for scalar strictness and scalar leniency."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_io_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import sparse_ops
import tensorflow.python.ops.nn_grad # pylint: disable=unused-import
from tensorflow.python.platform import test
# TODO(rmlarsen) : Remove this test completely after we stop supporting GraphDef
# version 5 and remove support of legacy scalars from Concat, Fill, Range,
# and Reshape.
class ScalarTest(test.TestCase):
def check(self, op, args, error, correct=None, lenient=None, strict=[5, 6]):
if lenient is None:
lenient = []
# Use placeholders to bypass shape inference, since only the C++
# G raphDef level is ever scalar lenient.
def placeholders(args, feed):
if isinstance(args, tuple):
return [placeholders(x, feed) for x in args]
else:
x = ops.convert_to_tensor(args).eval()
fake = array_ops.placeholder(np.asarray(x).dtype)
feed[fake] = x
return fake
# Test various GraphDef versions
for version in strict + lenient:
with ops.Graph().as_default() as g:
test_util.set_producer_version(g, version)
with self.session(graph=g) as sess:
feed = {}
xs = placeholders(args, feed)
x = op(*xs)
if version in strict:
with self.assertRaisesOpError(error):
sess.run(x, feed_dict=feed)
else:
r = sess.run(x, feed_dict=feed)
if correct is not None:
self.assertAllEqual(r, correct)
def testConcat(self):
for data in (2, [3], 7), ([2], 3, 7), ([2], [3], 7):
self.check(array_ops.concat, (data, 0),
r'Ranks of all input tensors should match', [2, 3, 7])
def testFill(self):
self.check(
array_ops.fill, (2, 3),
'dims must be a vector', [3, 3],
lenient=[5, 6],
strict=[])
self.check(
array_ops.fill, ([2], [3]),
'value must be a scalar', [3, 3],
lenient=[5, 6],
strict=[])
def testPad(self):
self.check(array_ops.pad, (7, [[1, 2]]),
'The first dimension of paddings must be the rank of inputs',
[0, 7, 0, 0])
def testRandom(self):
self.check(random_ops.random_uniform, (3,), 'shape must be a vector')
def testReshape(self):
self.check(
array_ops.reshape, (7, 1),
'sizes input must be 1-D', [7],
lenient=[5, 6],
strict=[])
def testShardedFilename(self):
self.check(gen_io_ops.sharded_filename, ('foo', 4, [100]),
'must be a scalar', b'foo-00004-of-00100')
def testShardedFilespec(self):
self.check(gen_io_ops.sharded_filespec, ('foo', [100]), 'must be a scalar',
b'foo-?????-of-00100')
def testUnsortedSegmentSum(self):
self.check(math_ops.unsorted_segment_sum, (7, 1, [4]),
'num_segments should be a scalar', [0, 7, 0, 0])
def testRange(self):
self.check(
math_ops.range, ([0], 3, 2),
'start must be a scalar', [0, 2],
lenient=[5, 6],
strict=[])
self.check(
math_ops.range, (0, [3], 2),
'limit must be a scalar', [0, 2],
lenient=[5, 6],
strict=[])
self.check(
math_ops.range, (0, 3, [2]),
'delta must be a scalar', [0, 2],
lenient=[5, 6],
strict=[])
def testSlice(self):
data = np.arange(10)
error = 'Expected begin and size arguments to be 1-D tensors'
self.check(array_ops.slice, (data, 2, 3), error, [2, 3, 4])
self.check(array_ops.slice, (data, [2], 3), error, [2, 3, 4])
self.check(array_ops.slice, (data, 2, [3]), error, [2, 3, 4])
def testSparseToDense(self):
self.check(sparse_ops.sparse_to_dense, (1, 4, 7),
'output_shape should be a vector', [0, 7, 0, 0])
def testTile(self):
self.check(array_ops.tile, ([7], 2), 'Expected multiples to be 1-D', [7, 7])
if __name__ == '__main__':
test.main()