ROCm platform currently does not support Pooling Ops with 3D Tensors This commit skips subtests (within python unit-tests) that test this functionality. The "skip" is guarded by the call to "is_built_with_rocm()", and hence these unit-tests will not be affected in any way when running with TF which was not built with ROCm support (i.e. `--config=rocm`)
396 lines
14 KiB
Python
396 lines
14 KiB
Python
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for unified pooling functionality in tensorflow.ops.nn."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import math
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.ops import gradient_checker
|
|
from tensorflow.python.ops import nn_ops
|
|
import tensorflow.python.ops.nn_grad # pylint: disable=unused-import
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
def pool_direct_single_axis(
|
|
input, # pylint: disable=redefined-builtin
|
|
axis,
|
|
window_size,
|
|
pooling_type,
|
|
padding,
|
|
dilation_rate,
|
|
stride):
|
|
"""Numpy implementation of pooling along a single axis.
|
|
|
|
This is intended for testing only, and therefore isn't particularly efficient.
|
|
|
|
See pool_direct below for the meaning of the arguments.
|
|
|
|
Args:
|
|
input: numpy array.
|
|
axis: axis along which to perform pooling.
|
|
window_size: int >= 1. Size of pooling window within axis.
|
|
pooling_type: either "MAX" or "AVG".
|
|
padding: either "SAME" or "VALID".
|
|
dilation_rate: int >= 1. Dilation factor for window, i.e. stride at which
|
|
to sample input.
|
|
stride: int >= 1. Stride at which to generate output.
|
|
|
|
Returns:
|
|
pooling output array of rank N+2.
|
|
|
|
Raises:
|
|
ValueError: if arguments are invalid.
|
|
"""
|
|
effective_window_size = (window_size - 1) * dilation_rate + 1
|
|
input_size = input.shape[axis]
|
|
if padding == "SAME":
|
|
output_size = int(math.ceil(input_size / stride))
|
|
total_padding_amount = max(
|
|
0, (output_size - 1) * stride + effective_window_size - input_size)
|
|
before_padding = total_padding_amount // 2
|
|
elif padding == "VALID":
|
|
output_size = int(
|
|
math.ceil((input_size - effective_window_size + 1) / stride))
|
|
before_padding = 0
|
|
else:
|
|
raise ValueError("Unsupported padding type: %r" % (padding,))
|
|
|
|
output_shape = input.shape[:axis] + (output_size,) + input.shape[axis + 1:]
|
|
output = np.zeros(output_shape, input.dtype)
|
|
initial_dim_selector = tuple(np.s_[:] for _ in range(axis))
|
|
if pooling_type == "MAX":
|
|
pooling_func = np.max
|
|
elif pooling_type == "AVG":
|
|
pooling_func = np.mean
|
|
else:
|
|
raise ValueError("Unsupported pooling type: %r" % (pooling_type,))
|
|
for output_pos in range(output_size):
|
|
input_start_pos = output_pos * stride - before_padding
|
|
input_end_pos = min(input_start_pos + effective_window_size, input_size)
|
|
if input_start_pos < 0:
|
|
input_start_pos += dilation_rate
|
|
input_slice = np.s_[input_start_pos:input_end_pos:dilation_rate]
|
|
|
|
output[initial_dim_selector + (output_pos,)] = pooling_func(
|
|
input[initial_dim_selector + (input_slice,)], axis=axis)
|
|
return output
|
|
|
|
|
|
def pool_direct(
|
|
input, # pylint: disable=redefined-builtin
|
|
window_shape,
|
|
pooling_type,
|
|
padding, # pylint: disable=redefined-builtin
|
|
dilation_rate,
|
|
strides,
|
|
data_format=None):
|
|
"""Numpy implementation of pooling.
|
|
|
|
This is intended for testing only, and therefore isn't particularly efficient.
|
|
|
|
See tensorflow.nn.pool.
|
|
|
|
Args:
|
|
input: numpy array of rank N+2.
|
|
window_shape: Sequence of N ints >= 1.
|
|
pooling_type: either "MAX" or "AVG".
|
|
padding: either "SAME" or "VALID".
|
|
dilation_rate: Sequence of N ints >= 1.
|
|
strides: Sequence of N ints >= 1.
|
|
data_format: If specified and starts with "NC", indicates that second
|
|
dimension, rather than the last dimension, specifies the channel.
|
|
|
|
Returns:
|
|
pooling output array of rank N+2.
|
|
|
|
Raises:
|
|
ValueError: if arguments are invalid.
|
|
"""
|
|
if data_format is None or not data_format.startswith("NC"):
|
|
spatial_start_dim = 1
|
|
else:
|
|
spatial_start_dim = 2
|
|
output = input
|
|
for i in range(len(window_shape)):
|
|
output = pool_direct_single_axis(
|
|
input=output,
|
|
axis=i + spatial_start_dim,
|
|
window_size=window_shape[i],
|
|
pooling_type=pooling_type,
|
|
padding=padding,
|
|
dilation_rate=dilation_rate[i],
|
|
stride=strides[i])
|
|
return output
|
|
|
|
|
|
class PoolingTest(test.TestCase):
|
|
|
|
def _test(self, input_shape, **kwargs):
|
|
# Use negative numbers to make sure there isn't any zero padding getting
|
|
# used.
|
|
x = -np.arange(
|
|
np.prod(input_shape), dtype=np.float32).reshape(input_shape) - 1
|
|
y1 = pool_direct(input=x, **kwargs)
|
|
y2 = nn_ops.pool(input=x, **kwargs)
|
|
self.assertAllClose(y1, self.evaluate(y2), rtol=1e-2, atol=1e-2)
|
|
|
|
def testPoolSimple(self):
|
|
with self.session(use_gpu=test.is_gpu_available()):
|
|
for padding in ["SAME", "VALID"]:
|
|
for pooling_type in ["MAX", "AVG"]:
|
|
self._test(
|
|
input_shape=[1, 1, 10, 1],
|
|
window_shape=[1, 3],
|
|
padding=padding,
|
|
pooling_type=pooling_type,
|
|
dilation_rate=[1, 1],
|
|
strides=[1, 2])
|
|
|
|
def testPool1D(self):
|
|
with self.session(use_gpu=test.is_gpu_available()):
|
|
for padding in ["SAME", "VALID"]:
|
|
for pooling_type in ["MAX", "AVG"]:
|
|
for input_shape in [[2, 9, 2], [2, 10, 2]]:
|
|
for window_shape in [[1], [2], [3]]:
|
|
if padding != "SAME":
|
|
for dilation_rate in [[1], [2], [3]]:
|
|
self._test(
|
|
input_shape=input_shape,
|
|
window_shape=window_shape,
|
|
padding=padding,
|
|
pooling_type=pooling_type,
|
|
dilation_rate=dilation_rate,
|
|
strides=[1])
|
|
for strides in [[1], [2], [3]]:
|
|
if np.any(np.array(strides) > window_shape):
|
|
continue
|
|
self._test(
|
|
input_shape=input_shape,
|
|
window_shape=window_shape,
|
|
padding=padding,
|
|
pooling_type=pooling_type,
|
|
dilation_rate=[1],
|
|
strides=strides)
|
|
|
|
def testPool2D(self):
|
|
with self.session(use_gpu=test.is_gpu_available()):
|
|
for padding in ["SAME", "VALID"]:
|
|
for pooling_type in ["MAX", "AVG"]:
|
|
for input_shape in [[2, 9, 10, 2], [2, 10, 9, 2]]:
|
|
for window_shape in [[1, 1], [2, 1], [2, 3]]:
|
|
if padding != "SAME":
|
|
for dilation_rate in [[1, 1], [2, 1], [1, 2], [2, 3]]:
|
|
self._test(
|
|
input_shape=input_shape,
|
|
window_shape=window_shape,
|
|
padding=padding,
|
|
pooling_type=pooling_type,
|
|
dilation_rate=dilation_rate,
|
|
strides=[1, 1])
|
|
for strides in [[1, 1], [2, 1], [1, 2], [2, 3]]:
|
|
if np.any(np.array(strides) > window_shape):
|
|
continue
|
|
self._test(
|
|
input_shape=input_shape,
|
|
window_shape=window_shape,
|
|
padding=padding,
|
|
pooling_type=pooling_type,
|
|
dilation_rate=[1, 1],
|
|
strides=strides)
|
|
|
|
def testPool3D(self):
|
|
if test.is_built_with_rocm():
|
|
self.skipTest("Pooling with 3D tensors is not supported in ROCm")
|
|
with self.session(use_gpu=test.is_gpu_available()):
|
|
for padding in ["SAME", "VALID"]:
|
|
for pooling_type in ["MAX", "AVG"]:
|
|
for input_shape in [[2, 9, 10, 11, 2], [2, 10, 9, 11, 2]]:
|
|
for window_shape in [[1, 1, 1], [2, 1, 2], [2, 3, 2]]:
|
|
if padding != "SAME":
|
|
for dilation_rate in [[1, 1, 1], [2, 1, 2], [1, 2, 2],
|
|
[2, 3, 3]]:
|
|
self._test(
|
|
input_shape=input_shape,
|
|
window_shape=window_shape,
|
|
padding=padding,
|
|
pooling_type=pooling_type,
|
|
dilation_rate=dilation_rate,
|
|
strides=[1, 1, 1])
|
|
for strides in [[1, 1, 1], [2, 1, 2], [1, 2, 2], [2, 3, 3]]:
|
|
if np.any(np.array(strides) > window_shape):
|
|
continue
|
|
self._test(
|
|
input_shape=input_shape,
|
|
window_shape=window_shape,
|
|
padding=padding,
|
|
pooling_type=pooling_type,
|
|
dilation_rate=[1, 1, 1],
|
|
strides=strides)
|
|
|
|
def testPoolNC(self):
|
|
if test.is_gpu_available(cuda_only=True):
|
|
# "NC*" format is currently only supported on CUDA.
|
|
with self.session(use_gpu=True):
|
|
for padding in ["SAME", "VALID"]:
|
|
self._test(
|
|
input_shape=[2, 2, 9],
|
|
window_shape=[2],
|
|
padding=padding,
|
|
pooling_type="MAX",
|
|
strides=[1],
|
|
dilation_rate=[1],
|
|
data_format="NCW")
|
|
self._test(
|
|
input_shape=[2, 2, 9],
|
|
window_shape=[2],
|
|
padding=padding,
|
|
pooling_type="MAX",
|
|
strides=[2],
|
|
dilation_rate=[1],
|
|
data_format="NCW")
|
|
self._test(
|
|
input_shape=[2, 2, 7, 9],
|
|
window_shape=[2, 2],
|
|
padding=padding,
|
|
pooling_type="MAX",
|
|
strides=[1, 2],
|
|
dilation_rate=[1, 1],
|
|
data_format="NCHW")
|
|
if test.is_built_with_rocm():
|
|
# Pooling with 3D tensors is not supported in ROCm
|
|
continue
|
|
self._test(
|
|
input_shape=[2, 2, 7, 5, 3],
|
|
window_shape=[2, 2, 2],
|
|
padding=padding,
|
|
pooling_type="MAX",
|
|
strides=[1, 2, 1],
|
|
dilation_rate=[1, 1, 1],
|
|
data_format="NCDHW")
|
|
self._test(
|
|
input_shape=[2, 2, 7, 9],
|
|
window_shape=[2, 2],
|
|
padding="VALID",
|
|
pooling_type="MAX",
|
|
strides=[1, 1],
|
|
dilation_rate=[2, 2],
|
|
data_format="NCHW")
|
|
|
|
def _test_gradient(self, input_shape, **kwargs):
|
|
x_val = -np.arange(
|
|
np.prod(input_shape), dtype=np.float32).reshape(input_shape) - 1
|
|
x = constant_op.constant(x_val, name="x", dtype=dtypes.float32)
|
|
output = nn_ops.pool(input=x, **kwargs)
|
|
y_shape = output.get_shape().as_list()
|
|
err = gradient_checker.compute_gradient_error(
|
|
[x], [input_shape], output, y_shape, x_init_value=[x_val])
|
|
err_tolerance = 1e-2
|
|
self.assertLess(err, err_tolerance)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testGradient1D(self):
|
|
with self.session(use_gpu=test.is_gpu_available()):
|
|
for padding in ["SAME", "VALID"]:
|
|
for pooling_type in ["AVG", "MAX"]:
|
|
for input_shape in [[2, 5, 2], [1, 4, 1]]:
|
|
for window_shape in [[1], [2]]:
|
|
if padding != "SAME":
|
|
for dilation_rate in [[1], [2]]:
|
|
self._test_gradient(
|
|
input_shape=input_shape,
|
|
window_shape=window_shape,
|
|
padding=padding,
|
|
pooling_type=pooling_type,
|
|
dilation_rate=dilation_rate,
|
|
strides=[1])
|
|
for strides in [[1], [2]]:
|
|
if np.any(np.array(strides) > window_shape):
|
|
continue
|
|
self._test(
|
|
input_shape=input_shape,
|
|
window_shape=window_shape,
|
|
padding=padding,
|
|
pooling_type=pooling_type,
|
|
dilation_rate=[1],
|
|
strides=strides)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testGradient2D(self):
|
|
with self.session(use_gpu=test.is_gpu_available()):
|
|
for padding in ["SAME", "VALID"]:
|
|
for pooling_type in ["AVG", "MAX"]:
|
|
for input_shape in [[2, 4, 5, 2], [1, 5, 4, 1]]:
|
|
for window_shape in [[1, 1], [2, 1], [2, 2]]:
|
|
if padding != "SAME":
|
|
for dilation_rate in [[1, 1], [2, 1], [2, 2]]:
|
|
self._test_gradient(
|
|
input_shape=input_shape,
|
|
window_shape=window_shape,
|
|
padding=padding,
|
|
pooling_type=pooling_type,
|
|
dilation_rate=dilation_rate,
|
|
strides=[1, 1])
|
|
for strides in [[1, 1], [2, 1], [1, 2], [2, 2]]:
|
|
if np.any(np.array(strides) > window_shape):
|
|
continue
|
|
self._test(
|
|
input_shape=input_shape,
|
|
window_shape=window_shape,
|
|
padding=padding,
|
|
pooling_type=pooling_type,
|
|
dilation_rate=[1, 1],
|
|
strides=strides)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testGradient3D(self):
|
|
if test.is_built_with_rocm():
|
|
self.skipTest("Pooling with 3D tensors is not supported in ROCm")
|
|
with self.session(use_gpu=test.is_gpu_available()):
|
|
for padding in ["SAME", "VALID"]:
|
|
for pooling_type in ["AVG", "MAX"]:
|
|
for input_shape in [[1, 3, 5, 4, 1], [1, 5, 4, 3, 1]]:
|
|
for window_shape in [[1, 1, 1], [2, 1, 2], [2, 2, 2]]:
|
|
if padding != "SAME":
|
|
for dilation_rate in [[1, 1, 1], [2, 1, 2], [2, 2, 2]]:
|
|
self._test_gradient(
|
|
input_shape=input_shape,
|
|
window_shape=window_shape,
|
|
padding=padding,
|
|
pooling_type=pooling_type,
|
|
dilation_rate=dilation_rate,
|
|
strides=[1, 1, 1])
|
|
for strides in [[1, 1, 1], [2, 1, 2], [2, 2, 2]]:
|
|
if np.any(np.array(strides) > window_shape):
|
|
continue
|
|
self._test(
|
|
input_shape=input_shape,
|
|
window_shape=window_shape,
|
|
padding=padding,
|
|
pooling_type=pooling_type,
|
|
dilation_rate=[1, 1, 1],
|
|
strides=strides)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|