STT-tensorflow/tensorflow/python/kernel_tests/pool_test.py
Deven Desai f4094a3abf [ROCm] Skipping subtests that check support for Pooling Ops with 3D tensors
ROCm platform currently does not support Pooling Ops with 3D Tensors

This commit skips subtests (within python unit-tests) that test this functionality. The "skip" is guarded by the call to "is_built_with_rocm()", and hence these unit-tests will not be affected in any way when running with TF which was not built with ROCm support (i.e. `--config=rocm`)
2019-07-08 18:39:38 +00:00

396 lines
14 KiB
Python

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for unified pooling functionality in tensorflow.ops.nn."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import test_util
from tensorflow.python.ops import gradient_checker
from tensorflow.python.ops import nn_ops
import tensorflow.python.ops.nn_grad # pylint: disable=unused-import
from tensorflow.python.platform import test
def pool_direct_single_axis(
input, # pylint: disable=redefined-builtin
axis,
window_size,
pooling_type,
padding,
dilation_rate,
stride):
"""Numpy implementation of pooling along a single axis.
This is intended for testing only, and therefore isn't particularly efficient.
See pool_direct below for the meaning of the arguments.
Args:
input: numpy array.
axis: axis along which to perform pooling.
window_size: int >= 1. Size of pooling window within axis.
pooling_type: either "MAX" or "AVG".
padding: either "SAME" or "VALID".
dilation_rate: int >= 1. Dilation factor for window, i.e. stride at which
to sample input.
stride: int >= 1. Stride at which to generate output.
Returns:
pooling output array of rank N+2.
Raises:
ValueError: if arguments are invalid.
"""
effective_window_size = (window_size - 1) * dilation_rate + 1
input_size = input.shape[axis]
if padding == "SAME":
output_size = int(math.ceil(input_size / stride))
total_padding_amount = max(
0, (output_size - 1) * stride + effective_window_size - input_size)
before_padding = total_padding_amount // 2
elif padding == "VALID":
output_size = int(
math.ceil((input_size - effective_window_size + 1) / stride))
before_padding = 0
else:
raise ValueError("Unsupported padding type: %r" % (padding,))
output_shape = input.shape[:axis] + (output_size,) + input.shape[axis + 1:]
output = np.zeros(output_shape, input.dtype)
initial_dim_selector = tuple(np.s_[:] for _ in range(axis))
if pooling_type == "MAX":
pooling_func = np.max
elif pooling_type == "AVG":
pooling_func = np.mean
else:
raise ValueError("Unsupported pooling type: %r" % (pooling_type,))
for output_pos in range(output_size):
input_start_pos = output_pos * stride - before_padding
input_end_pos = min(input_start_pos + effective_window_size, input_size)
if input_start_pos < 0:
input_start_pos += dilation_rate
input_slice = np.s_[input_start_pos:input_end_pos:dilation_rate]
output[initial_dim_selector + (output_pos,)] = pooling_func(
input[initial_dim_selector + (input_slice,)], axis=axis)
return output
def pool_direct(
input, # pylint: disable=redefined-builtin
window_shape,
pooling_type,
padding, # pylint: disable=redefined-builtin
dilation_rate,
strides,
data_format=None):
"""Numpy implementation of pooling.
This is intended for testing only, and therefore isn't particularly efficient.
See tensorflow.nn.pool.
Args:
input: numpy array of rank N+2.
window_shape: Sequence of N ints >= 1.
pooling_type: either "MAX" or "AVG".
padding: either "SAME" or "VALID".
dilation_rate: Sequence of N ints >= 1.
strides: Sequence of N ints >= 1.
data_format: If specified and starts with "NC", indicates that second
dimension, rather than the last dimension, specifies the channel.
Returns:
pooling output array of rank N+2.
Raises:
ValueError: if arguments are invalid.
"""
if data_format is None or not data_format.startswith("NC"):
spatial_start_dim = 1
else:
spatial_start_dim = 2
output = input
for i in range(len(window_shape)):
output = pool_direct_single_axis(
input=output,
axis=i + spatial_start_dim,
window_size=window_shape[i],
pooling_type=pooling_type,
padding=padding,
dilation_rate=dilation_rate[i],
stride=strides[i])
return output
class PoolingTest(test.TestCase):
def _test(self, input_shape, **kwargs):
# Use negative numbers to make sure there isn't any zero padding getting
# used.
x = -np.arange(
np.prod(input_shape), dtype=np.float32).reshape(input_shape) - 1
y1 = pool_direct(input=x, **kwargs)
y2 = nn_ops.pool(input=x, **kwargs)
self.assertAllClose(y1, self.evaluate(y2), rtol=1e-2, atol=1e-2)
def testPoolSimple(self):
with self.session(use_gpu=test.is_gpu_available()):
for padding in ["SAME", "VALID"]:
for pooling_type in ["MAX", "AVG"]:
self._test(
input_shape=[1, 1, 10, 1],
window_shape=[1, 3],
padding=padding,
pooling_type=pooling_type,
dilation_rate=[1, 1],
strides=[1, 2])
def testPool1D(self):
with self.session(use_gpu=test.is_gpu_available()):
for padding in ["SAME", "VALID"]:
for pooling_type in ["MAX", "AVG"]:
for input_shape in [[2, 9, 2], [2, 10, 2]]:
for window_shape in [[1], [2], [3]]:
if padding != "SAME":
for dilation_rate in [[1], [2], [3]]:
self._test(
input_shape=input_shape,
window_shape=window_shape,
padding=padding,
pooling_type=pooling_type,
dilation_rate=dilation_rate,
strides=[1])
for strides in [[1], [2], [3]]:
if np.any(np.array(strides) > window_shape):
continue
self._test(
input_shape=input_shape,
window_shape=window_shape,
padding=padding,
pooling_type=pooling_type,
dilation_rate=[1],
strides=strides)
def testPool2D(self):
with self.session(use_gpu=test.is_gpu_available()):
for padding in ["SAME", "VALID"]:
for pooling_type in ["MAX", "AVG"]:
for input_shape in [[2, 9, 10, 2], [2, 10, 9, 2]]:
for window_shape in [[1, 1], [2, 1], [2, 3]]:
if padding != "SAME":
for dilation_rate in [[1, 1], [2, 1], [1, 2], [2, 3]]:
self._test(
input_shape=input_shape,
window_shape=window_shape,
padding=padding,
pooling_type=pooling_type,
dilation_rate=dilation_rate,
strides=[1, 1])
for strides in [[1, 1], [2, 1], [1, 2], [2, 3]]:
if np.any(np.array(strides) > window_shape):
continue
self._test(
input_shape=input_shape,
window_shape=window_shape,
padding=padding,
pooling_type=pooling_type,
dilation_rate=[1, 1],
strides=strides)
def testPool3D(self):
if test.is_built_with_rocm():
self.skipTest("Pooling with 3D tensors is not supported in ROCm")
with self.session(use_gpu=test.is_gpu_available()):
for padding in ["SAME", "VALID"]:
for pooling_type in ["MAX", "AVG"]:
for input_shape in [[2, 9, 10, 11, 2], [2, 10, 9, 11, 2]]:
for window_shape in [[1, 1, 1], [2, 1, 2], [2, 3, 2]]:
if padding != "SAME":
for dilation_rate in [[1, 1, 1], [2, 1, 2], [1, 2, 2],
[2, 3, 3]]:
self._test(
input_shape=input_shape,
window_shape=window_shape,
padding=padding,
pooling_type=pooling_type,
dilation_rate=dilation_rate,
strides=[1, 1, 1])
for strides in [[1, 1, 1], [2, 1, 2], [1, 2, 2], [2, 3, 3]]:
if np.any(np.array(strides) > window_shape):
continue
self._test(
input_shape=input_shape,
window_shape=window_shape,
padding=padding,
pooling_type=pooling_type,
dilation_rate=[1, 1, 1],
strides=strides)
def testPoolNC(self):
if test.is_gpu_available(cuda_only=True):
# "NC*" format is currently only supported on CUDA.
with self.session(use_gpu=True):
for padding in ["SAME", "VALID"]:
self._test(
input_shape=[2, 2, 9],
window_shape=[2],
padding=padding,
pooling_type="MAX",
strides=[1],
dilation_rate=[1],
data_format="NCW")
self._test(
input_shape=[2, 2, 9],
window_shape=[2],
padding=padding,
pooling_type="MAX",
strides=[2],
dilation_rate=[1],
data_format="NCW")
self._test(
input_shape=[2, 2, 7, 9],
window_shape=[2, 2],
padding=padding,
pooling_type="MAX",
strides=[1, 2],
dilation_rate=[1, 1],
data_format="NCHW")
if test.is_built_with_rocm():
# Pooling with 3D tensors is not supported in ROCm
continue
self._test(
input_shape=[2, 2, 7, 5, 3],
window_shape=[2, 2, 2],
padding=padding,
pooling_type="MAX",
strides=[1, 2, 1],
dilation_rate=[1, 1, 1],
data_format="NCDHW")
self._test(
input_shape=[2, 2, 7, 9],
window_shape=[2, 2],
padding="VALID",
pooling_type="MAX",
strides=[1, 1],
dilation_rate=[2, 2],
data_format="NCHW")
def _test_gradient(self, input_shape, **kwargs):
x_val = -np.arange(
np.prod(input_shape), dtype=np.float32).reshape(input_shape) - 1
x = constant_op.constant(x_val, name="x", dtype=dtypes.float32)
output = nn_ops.pool(input=x, **kwargs)
y_shape = output.get_shape().as_list()
err = gradient_checker.compute_gradient_error(
[x], [input_shape], output, y_shape, x_init_value=[x_val])
err_tolerance = 1e-2
self.assertLess(err, err_tolerance)
@test_util.run_deprecated_v1
def testGradient1D(self):
with self.session(use_gpu=test.is_gpu_available()):
for padding in ["SAME", "VALID"]:
for pooling_type in ["AVG", "MAX"]:
for input_shape in [[2, 5, 2], [1, 4, 1]]:
for window_shape in [[1], [2]]:
if padding != "SAME":
for dilation_rate in [[1], [2]]:
self._test_gradient(
input_shape=input_shape,
window_shape=window_shape,
padding=padding,
pooling_type=pooling_type,
dilation_rate=dilation_rate,
strides=[1])
for strides in [[1], [2]]:
if np.any(np.array(strides) > window_shape):
continue
self._test(
input_shape=input_shape,
window_shape=window_shape,
padding=padding,
pooling_type=pooling_type,
dilation_rate=[1],
strides=strides)
@test_util.run_deprecated_v1
def testGradient2D(self):
with self.session(use_gpu=test.is_gpu_available()):
for padding in ["SAME", "VALID"]:
for pooling_type in ["AVG", "MAX"]:
for input_shape in [[2, 4, 5, 2], [1, 5, 4, 1]]:
for window_shape in [[1, 1], [2, 1], [2, 2]]:
if padding != "SAME":
for dilation_rate in [[1, 1], [2, 1], [2, 2]]:
self._test_gradient(
input_shape=input_shape,
window_shape=window_shape,
padding=padding,
pooling_type=pooling_type,
dilation_rate=dilation_rate,
strides=[1, 1])
for strides in [[1, 1], [2, 1], [1, 2], [2, 2]]:
if np.any(np.array(strides) > window_shape):
continue
self._test(
input_shape=input_shape,
window_shape=window_shape,
padding=padding,
pooling_type=pooling_type,
dilation_rate=[1, 1],
strides=strides)
@test_util.run_deprecated_v1
def testGradient3D(self):
if test.is_built_with_rocm():
self.skipTest("Pooling with 3D tensors is not supported in ROCm")
with self.session(use_gpu=test.is_gpu_available()):
for padding in ["SAME", "VALID"]:
for pooling_type in ["AVG", "MAX"]:
for input_shape in [[1, 3, 5, 4, 1], [1, 5, 4, 3, 1]]:
for window_shape in [[1, 1, 1], [2, 1, 2], [2, 2, 2]]:
if padding != "SAME":
for dilation_rate in [[1, 1, 1], [2, 1, 2], [2, 2, 2]]:
self._test_gradient(
input_shape=input_shape,
window_shape=window_shape,
padding=padding,
pooling_type=pooling_type,
dilation_rate=dilation_rate,
strides=[1, 1, 1])
for strides in [[1, 1, 1], [2, 1, 2], [2, 2, 2]]:
if np.any(np.array(strides) > window_shape):
continue
self._test(
input_shape=input_shape,
window_shape=window_shape,
padding=padding,
pooling_type=pooling_type,
dilation_rate=[1, 1, 1],
strides=strides)
if __name__ == "__main__":
test.main()