STT-tensorflow/tensorflow/python/kernel_tests/numerics_test.py
Tres Popp 35312cceb1 Remove workarounds for XLA's previous inf/nan behavior after it's been fixed.
PiperOrigin-RevId: 313559788
Change-Id: I3d5fe3d7b7267d073ef45fe042503932d99b03cb
2020-05-28 03:56:21 -07:00

135 lines
5.1 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow.ops.numerics."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import numerics
from tensorflow.python.platform import test
class VerifyTensorAllFiniteTest(test.TestCase):
def testVerifyTensorAllFiniteSucceeds(self):
x_shape = [5, 4]
x = np.random.random_sample(x_shape).astype(np.float32)
with test_util.use_gpu():
t = constant_op.constant(x, shape=x_shape, dtype=dtypes.float32)
t_verified = numerics.verify_tensor_all_finite(t,
"Input is not a number.")
self.assertAllClose(x, self.evaluate(t_verified))
def testVerifyTensorAllFiniteFails(self):
x_shape = [5, 4]
x = np.random.random_sample(x_shape).astype(np.float32)
my_msg = "Input is not a number."
# Test NaN.
x[0] = np.nan
with test_util.use_gpu():
with self.assertRaisesOpError(my_msg):
t = constant_op.constant(x, shape=x_shape, dtype=dtypes.float32)
t_verified = numerics.verify_tensor_all_finite(t, my_msg)
self.evaluate(t_verified)
# Test Inf.
x[0] = np.inf
with test_util.use_gpu():
with self.assertRaisesOpError(my_msg):
t = constant_op.constant(x, shape=x_shape, dtype=dtypes.float32)
t_verified = numerics.verify_tensor_all_finite(t, my_msg)
self.evaluate(t_verified)
@test_util.run_v1_only("add_check_numerics_op() is meant to be a v1-only API")
class NumericsTest(test.TestCase):
def testInf(self):
with self.session(graph=ops.Graph()):
t1 = constant_op.constant(1.0)
t2 = constant_op.constant(0.0)
a = math_ops.div(t1, t2)
check = numerics.add_check_numerics_ops()
a = control_flow_ops.with_dependencies([check], a)
with self.assertRaisesOpError("Inf"):
self.evaluate(a)
def testNaN(self):
with self.session(graph=ops.Graph()):
t1 = constant_op.constant(0.0)
t2 = constant_op.constant(0.0)
a = math_ops.div(t1, t2)
check = numerics.add_check_numerics_ops()
a = control_flow_ops.with_dependencies([check], a)
with self.assertRaisesOpError("NaN"):
self.evaluate(a)
def testBoth(self):
with self.session(graph=ops.Graph()):
t1 = constant_op.constant([1.0, 0.0])
t2 = constant_op.constant([0.0, 0.0])
a = math_ops.div(t1, t2)
check = numerics.add_check_numerics_ops()
a = control_flow_ops.with_dependencies([check], a)
with self.assertRaisesOpError("Inf and NaN"):
self.evaluate(a)
def testPassThrough(self):
with self.session(graph=ops.Graph()):
t1 = constant_op.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3])
checked = array_ops.check_numerics(t1, message="pass through test")
value = self.evaluate(checked)
self.assertAllEqual(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]), value)
self.assertEqual([2, 3], checked.get_shape())
def testControlFlowCond(self):
predicate = array_ops.placeholder(dtypes.bool, shape=[])
_ = control_flow_ops.cond(predicate,
lambda: constant_op.constant([37.]),
lambda: constant_op.constant([42.]))
with self.assertRaisesRegexp(
ValueError,
r"`tf\.add_check_numerics_ops\(\) is not compatible with "
r"TensorFlow control flow operations such as `tf\.cond\(\)` "
r"or `tf.while_loop\(\)`\."):
numerics.add_check_numerics_ops()
def testControlFlowWhile(self):
predicate = array_ops.placeholder(dtypes.bool, shape=[])
_ = control_flow_ops.while_loop(lambda _: predicate,
lambda _: constant_op.constant([37.]),
[constant_op.constant([42.])])
with self.assertRaisesRegexp(
ValueError,
r"`tf\.add_check_numerics_ops\(\) is not compatible with "
r"TensorFlow control flow operations such as `tf\.cond\(\)` "
r"or `tf.while_loop\(\)`\."):
numerics.add_check_numerics_ops()
if __name__ == "__main__":
test.main()