STT-tensorflow/tensorflow/python/kernel_tests/linalg_ops_test.py
Andrew Selle ebd34b3dc1 Use subTest to improve error reporting on linear algebra ops.
e.g. cholesky_op_test.py, linalg_ops_test.py, lu_ops_test.py

PiperOrigin-RevId: 310654829
Change-Id: I82ba700cf02fb8122a43eabda530c6f60574e372
2020-05-08 17:01:34 -07:00

568 lines
19 KiB
Python

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow.python.ops.linalg_ops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import itertools
from absl.testing import parameterized
import numpy as np
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import linalg_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops.linalg import linalg
from tensorflow.python.platform import test
def _AddTest(test_class, op_name, testcase_name, fn):
test_name = "_".join(["test", op_name, testcase_name])
if hasattr(test_class, test_name):
raise RuntimeError("Test %s defined more than once" % test_name)
setattr(test_class, test_name, fn)
def _RandomPDMatrix(n, rng, dtype=np.float64):
"""Random positive definite matrix."""
temp = rng.randn(n, n).astype(dtype)
if dtype in [np.complex64, np.complex128]:
temp.imag = rng.randn(n, n)
return np.conj(temp).dot(temp.T)
class CholeskySolveTest(test.TestCase):
def setUp(self):
self.rng = np.random.RandomState(0)
@test_util.run_deprecated_v1
def test_works_with_five_different_random_pos_def_matrices(self):
for n in range(1, 6):
for np_type, atol in [(np.float32, 0.05), (np.float64, 1e-5)]:
with self.session(use_gpu=True):
# Create 2 x n x n matrix
array = np.array(
[_RandomPDMatrix(n, self.rng),
_RandomPDMatrix(n, self.rng)]).astype(np_type)
chol = linalg_ops.cholesky(array)
for k in range(1, 3):
with self.subTest(n=n, np_type=np_type, atol=atol, k=k):
rhs = self.rng.randn(2, n, k).astype(np_type)
x = linalg_ops.cholesky_solve(chol, rhs)
self.assertAllClose(
rhs, math_ops.matmul(array, x).eval(), atol=atol)
class LogdetTest(test.TestCase):
def setUp(self):
self.rng = np.random.RandomState(42)
@test_util.run_deprecated_v1
def test_works_with_five_different_random_pos_def_matrices(self):
for n in range(1, 6):
for np_dtype, atol in [(np.float32, 0.05), (np.float64, 1e-5),
(np.complex64, 0.05), (np.complex128, 1e-5)]:
with self.subTest(n=n, np_dtype=np_dtype, atol=atol):
matrix = _RandomPDMatrix(n, self.rng, np_dtype)
_, logdet_np = np.linalg.slogdet(matrix)
with self.session(use_gpu=True):
# Create 2 x n x n matrix
# matrix = np.array(
# [_RandomPDMatrix(n, self.rng, np_dtype),
# _RandomPDMatrix(n, self.rng, np_dtype)]).astype(np_dtype)
logdet_tf = linalg.logdet(matrix)
self.assertAllClose(logdet_np, self.evaluate(logdet_tf), atol=atol)
def test_works_with_underflow_case(self):
for np_dtype, atol in [(np.float32, 0.05), (np.float64, 1e-5),
(np.complex64, 0.05), (np.complex128, 1e-5)]:
with self.subTest(np_dtype=np_dtype, atol=atol):
matrix = (np.eye(20) * 1e-6).astype(np_dtype)
_, logdet_np = np.linalg.slogdet(matrix)
with self.session(use_gpu=True):
logdet_tf = linalg.logdet(matrix)
self.assertAllClose(logdet_np, self.evaluate(logdet_tf), atol=atol)
class SlogdetTest(test.TestCase):
def setUp(self):
self.rng = np.random.RandomState(42)
@test_util.run_deprecated_v1
def test_works_with_five_different_random_pos_def_matrices(self):
for n in range(1, 6):
for np_dtype, atol in [(np.float32, 0.05), (np.float64, 1e-5),
(np.complex64, 0.05), (np.complex128, 1e-5)]:
with self.subTest(n=n, np_dtype=np_dtype, atol=atol):
matrix = _RandomPDMatrix(n, self.rng, np_dtype)
sign_np, log_abs_det_np = np.linalg.slogdet(matrix)
with self.session(use_gpu=True):
sign_tf, log_abs_det_tf = linalg.slogdet(matrix)
self.assertAllClose(
log_abs_det_np, self.evaluate(log_abs_det_tf), atol=atol)
self.assertAllClose(sign_np, self.evaluate(sign_tf), atol=atol)
def test_works_with_underflow_case(self):
for np_dtype, atol in [(np.float32, 0.05), (np.float64, 1e-5),
(np.complex64, 0.05), (np.complex128, 1e-5)]:
with self.subTest(np_dtype=np_dtype, atol=atol):
matrix = (np.eye(20) * 1e-6).astype(np_dtype)
sign_np, log_abs_det_np = np.linalg.slogdet(matrix)
with self.session(use_gpu=True):
sign_tf, log_abs_det_tf = linalg.slogdet(matrix)
self.assertAllClose(
log_abs_det_np, self.evaluate(log_abs_det_tf), atol=atol)
self.assertAllClose(sign_np, self.evaluate(sign_tf), atol=atol)
class AdjointTest(test.TestCase):
def test_compare_to_numpy(self):
for dtype in np.float64, np.float64, np.complex64, np.complex128:
with self.subTest(dtype=dtype):
matrix_np = np.array([[1 + 1j, 2 + 2j, 3 + 3j], [4 + 4j, 5 + 5j,
6 + 6j]]).astype(dtype)
expected_transposed = np.conj(matrix_np.T)
with self.session():
matrix = ops.convert_to_tensor(matrix_np)
transposed = linalg.adjoint(matrix)
self.assertEqual((3, 2), transposed.get_shape())
self.assertAllEqual(expected_transposed, self.evaluate(transposed))
class EyeTest(parameterized.TestCase, test.TestCase):
def testShapeInferenceNoBatch(self):
self.assertEqual((2, 2), linalg_ops.eye(num_rows=2).shape)
self.assertEqual((2, 3), linalg_ops.eye(num_rows=2, num_columns=3).shape)
def testShapeInferenceStaticBatch(self):
batch_shape = (2, 3)
self.assertEqual(
(2, 3, 2, 2),
linalg_ops.eye(num_rows=2, batch_shape=batch_shape).shape)
self.assertEqual(
(2, 3, 2, 3),
linalg_ops.eye(
num_rows=2, num_columns=3, batch_shape=batch_shape).shape)
@parameterized.named_parameters(
("DynamicRow",
lambda: array_ops.placeholder_with_default(2, shape=None),
lambda: None),
("DynamicRowStaticColumn",
lambda: array_ops.placeholder_with_default(2, shape=None),
lambda: 3),
("StaticRowDynamicColumn",
lambda: 2,
lambda: array_ops.placeholder_with_default(3, shape=None)),
("DynamicRowDynamicColumn",
lambda: array_ops.placeholder_with_default(2, shape=None),
lambda: array_ops.placeholder_with_default(3, shape=None)))
def testShapeInferenceStaticBatchWith(self, num_rows_fn, num_columns_fn):
num_rows = num_rows_fn()
num_columns = num_columns_fn()
batch_shape = (2, 3)
identity_matrix = linalg_ops.eye(
num_rows=num_rows,
num_columns=num_columns,
batch_shape=batch_shape)
self.assertEqual(4, identity_matrix.shape.ndims)
self.assertEqual((2, 3), identity_matrix.shape[:2])
if num_rows is not None and not isinstance(num_rows, ops.Tensor):
self.assertEqual(2, identity_matrix.shape[-2])
if num_columns is not None and not isinstance(num_columns, ops.Tensor):
self.assertEqual(3, identity_matrix.shape[-1])
@parameterized.parameters(
itertools.product(
# num_rows
[0, 1, 2, 5],
# num_columns
[None, 0, 1, 2, 5],
# batch_shape
[None, [], [2], [2, 3]],
# dtype
[
dtypes.int32,
dtypes.int64,
dtypes.float32,
dtypes.float64,
dtypes.complex64,
dtypes.complex128
])
)
def test_eye_no_placeholder(self, num_rows, num_columns, batch_shape, dtype):
eye_np = np.eye(num_rows, M=num_columns, dtype=dtype.as_numpy_dtype)
if batch_shape is not None:
eye_np = np.tile(eye_np, batch_shape + [1, 1])
eye_tf = self.evaluate(linalg_ops.eye(
num_rows,
num_columns=num_columns,
batch_shape=batch_shape,
dtype=dtype))
self.assertAllEqual(eye_np, eye_tf)
@parameterized.parameters(
itertools.product(
# num_rows
[0, 1, 2, 5],
# num_columns
[0, 1, 2, 5],
# batch_shape
[[], [2], [2, 3]],
# dtype
[
dtypes.int32,
dtypes.int64,
dtypes.float32,
dtypes.float64,
dtypes.complex64,
dtypes.complex128
])
)
@test_util.run_deprecated_v1
def test_eye_with_placeholder(
self, num_rows, num_columns, batch_shape, dtype):
eye_np = np.eye(num_rows, M=num_columns, dtype=dtype.as_numpy_dtype)
eye_np = np.tile(eye_np, batch_shape + [1, 1])
num_rows_placeholder = array_ops.placeholder(
dtypes.int32, name="num_rows")
num_columns_placeholder = array_ops.placeholder(
dtypes.int32, name="num_columns")
batch_shape_placeholder = array_ops.placeholder(
dtypes.int32, name="batch_shape")
eye = linalg_ops.eye(
num_rows_placeholder,
num_columns=num_columns_placeholder,
batch_shape=batch_shape_placeholder,
dtype=dtype)
with self.session(use_gpu=True) as sess:
eye_tf = sess.run(
eye,
feed_dict={
num_rows_placeholder: num_rows,
num_columns_placeholder: num_columns,
batch_shape_placeholder: batch_shape
})
self.assertAllEqual(eye_np, eye_tf)
class _MatrixRankTest(object):
def test_batch_default_tolerance(self):
x_ = np.array(
[
[
[2, 3, -2], # = row2+row3
[-1, 1, -2],
[3, 2, 0]
],
[
[0, 2, 0], # = 2*row2
[0, 1, 0],
[0, 3, 0]
], # = 3*row2
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]
],
self.dtype)
x = array_ops.placeholder_with_default(
x_, shape=x_.shape if self.use_static_shape else None)
self.assertAllEqual([2, 1, 3], self.evaluate(linalg.matrix_rank(x)))
def test_custom_tolerance_broadcasts(self):
q = linalg.qr(random_ops.random_uniform([3, 3], dtype=self.dtype))[0]
e = constant_op.constant([0.1, 0.2, 0.3], dtype=self.dtype)
a = linalg.solve(q, linalg.transpose(a=e * q), adjoint=True)
self.assertAllEqual([3, 2, 1, 0],
self.evaluate(
linalg.matrix_rank(
a, tol=[[0.09], [0.19], [0.29], [0.31]])))
def test_nonsquare(self):
x_ = np.array(
[
[
[2, 3, -2, 2], # = row2+row3
[-1, 1, -2, 4],
[3, 2, 0, -2]
],
[
[0, 2, 0, 6], # = 2*row2
[0, 1, 0, 3],
[0, 3, 0, 9]
]
], # = 3*row2
self.dtype)
x = array_ops.placeholder_with_default(
x_, shape=x_.shape if self.use_static_shape else None)
self.assertAllEqual([2, 1], self.evaluate(linalg.matrix_rank(x)))
@test_util.run_all_in_graph_and_eager_modes
class MatrixRankStatic32Test(test.TestCase, _MatrixRankTest):
dtype = np.float32
use_static_shape = True
@test_util.run_all_in_graph_and_eager_modes
class MatrixRankDynamic64Test(test.TestCase, _MatrixRankTest):
dtype = np.float64
use_static_shape = False
class _PinvTest(object):
def expected_pinv(self, a, rcond):
"""Calls `np.linalg.pinv` but corrects its broken batch semantics."""
if a.ndim < 3:
return np.linalg.pinv(a, rcond)
if rcond is None:
rcond = 10. * max(a.shape[-2], a.shape[-1]) * np.finfo(a.dtype).eps
s = np.concatenate([a.shape[:-2], [a.shape[-1], a.shape[-2]]])
a_pinv = np.zeros(s, dtype=a.dtype)
for i in np.ndindex(a.shape[:(a.ndim - 2)]):
a_pinv[i] = np.linalg.pinv(
a[i], rcond=rcond if isinstance(rcond, float) else rcond[i])
return a_pinv
def test_symmetric(self):
a_ = self.dtype([[1., .4, .5], [.4, .2, .25], [.5, .25, .35]])
a_ = np.stack([a_ + 1., a_], axis=0) # Batch of matrices.
a = array_ops.placeholder_with_default(
a_, shape=a_.shape if self.use_static_shape else None)
if self.use_default_rcond:
rcond = None
else:
rcond = self.dtype([0., 0.01]) # Smallest 1 component is forced to zero.
expected_a_pinv_ = self.expected_pinv(a_, rcond)
a_pinv = linalg.pinv(a, rcond, validate_args=True)
a_pinv_ = self.evaluate(a_pinv)
self.assertAllClose(expected_a_pinv_, a_pinv_, atol=2e-5, rtol=2e-5)
if not self.use_static_shape:
return
self.assertAllEqual(expected_a_pinv_.shape, a_pinv.shape)
def test_nonsquare(self):
a_ = self.dtype([[1., .4, .5, 1.], [.4, .2, .25, 2.], [.5, .25, .35, 3.]])
a_ = np.stack([a_ + 0.5, a_], axis=0) # Batch of matrices.
a = array_ops.placeholder_with_default(
a_, shape=a_.shape if self.use_static_shape else None)
if self.use_default_rcond:
rcond = None
else:
# Smallest 2 components are forced to zero.
rcond = self.dtype([0., 0.25])
expected_a_pinv_ = self.expected_pinv(a_, rcond)
a_pinv = linalg.pinv(a, rcond, validate_args=True)
a_pinv_ = self.evaluate(a_pinv)
self.assertAllClose(expected_a_pinv_, a_pinv_, atol=1e-5, rtol=1e-4)
if not self.use_static_shape:
return
self.assertAllEqual(expected_a_pinv_.shape, a_pinv.shape)
@test_util.run_all_in_graph_and_eager_modes
class PinvTestDynamic32DefaultRcond(test.TestCase, _PinvTest):
dtype = np.float32
use_static_shape = False
use_default_rcond = True
@test_util.run_all_in_graph_and_eager_modes
class PinvTestStatic64DefaultRcond(test.TestCase, _PinvTest):
dtype = np.float64
use_static_shape = True
use_default_rcond = True
@test_util.run_all_in_graph_and_eager_modes
class PinvTestDynamic32CustomtRcond(test.TestCase, _PinvTest):
dtype = np.float32
use_static_shape = False
use_default_rcond = False
@test_util.run_all_in_graph_and_eager_modes
class PinvTestStatic64CustomRcond(test.TestCase, _PinvTest):
dtype = np.float64
use_static_shape = True
use_default_rcond = False
def make_tensor_hiding_attributes(value, hide_shape, hide_value=True):
if not hide_value:
return ops.convert_to_tensor(value)
shape = None if hide_shape else getattr(value, "shape", None)
return array_ops.placeholder_with_default(value, shape=shape)
class _LUReconstruct(object):
dtype = np.float32
use_static_shape = True
def test_non_batch(self):
x_ = np.array([[3, 4], [1, 2]], dtype=self.dtype)
x = array_ops.placeholder_with_default(
x_, shape=x_.shape if self.use_static_shape else None)
y = linalg.lu_reconstruct(*linalg.lu(x), validate_args=True)
y_ = self.evaluate(y)
if self.use_static_shape:
self.assertAllEqual(x_.shape, y.shape)
self.assertAllClose(x_, y_, atol=0., rtol=1e-3)
def test_batch(self):
x_ = np.array([
[[3, 4], [1, 2]],
[[7, 8], [3, 4]],
], dtype=self.dtype)
x = array_ops.placeholder_with_default(
x_, shape=x_.shape if self.use_static_shape else None)
y = linalg.lu_reconstruct(*linalg.lu(x), validate_args=True)
y_ = self.evaluate(y)
if self.use_static_shape:
self.assertAllEqual(x_.shape, y.shape)
self.assertAllClose(x_, y_, atol=0., rtol=1e-3)
@test_util.run_all_in_graph_and_eager_modes
class LUReconstructStatic(test.TestCase, _LUReconstruct):
use_static_shape = True
@test_util.run_all_in_graph_and_eager_modes
class LUReconstructDynamic(test.TestCase, _LUReconstruct):
use_static_shape = False
class _LUMatrixInverse(object):
dtype = np.float32
use_static_shape = True
def test_non_batch(self):
x_ = np.array([[1, 2], [3, 4]], dtype=self.dtype)
x = array_ops.placeholder_with_default(
x_, shape=x_.shape if self.use_static_shape else None)
y = linalg.lu_matrix_inverse(*linalg.lu(x), validate_args=True)
y_ = self.evaluate(y)
if self.use_static_shape:
self.assertAllEqual(x_.shape, y.shape)
self.assertAllClose(np.linalg.inv(x_), y_, atol=0., rtol=1e-3)
def test_batch(self):
x_ = np.array([
[[1, 2], [3, 4]],
[[7, 8], [3, 4]],
[[0.25, 0.5], [0.75, -2.]],
],
dtype=self.dtype)
x = array_ops.placeholder_with_default(
x_, shape=x_.shape if self.use_static_shape else None)
y = linalg.lu_matrix_inverse(*linalg.lu(x), validate_args=True)
y_ = self.evaluate(y)
if self.use_static_shape:
self.assertAllEqual(x_.shape, y.shape)
self.assertAllClose(np.linalg.inv(x_), y_, atol=0., rtol=1e-3)
@test_util.run_all_in_graph_and_eager_modes
class LUMatrixInverseStatic(test.TestCase, _LUMatrixInverse):
use_static_shape = True
@test_util.run_all_in_graph_and_eager_modes
class LUMatrixInverseDynamic(test.TestCase, _LUMatrixInverse):
use_static_shape = False
class _LUSolve(object):
dtype = np.float32
use_static_shape = True
def test_non_batch(self):
x_ = np.array([[1, 2], [3, 4]], dtype=self.dtype)
x = array_ops.placeholder_with_default(
x_, shape=x_.shape if self.use_static_shape else None)
rhs_ = np.array([[1, 1]], dtype=self.dtype).T
rhs = array_ops.placeholder_with_default(
rhs_, shape=rhs_.shape if self.use_static_shape else None)
lower_upper, perm = linalg.lu(x)
y = linalg.lu_solve(lower_upper, perm, rhs, validate_args=True)
y_, perm_ = self.evaluate([y, perm])
self.assertAllEqual([1, 0], perm_)
expected_ = np.linalg.solve(x_, rhs_)
if self.use_static_shape:
self.assertAllEqual(expected_.shape, y.shape)
self.assertAllClose(expected_, y_, atol=0., rtol=1e-3)
def test_batch_broadcast(self):
x_ = np.array([
[[1, 2], [3, 4]],
[[7, 8], [3, 4]],
[[0.25, 0.5], [0.75, -2.]],
],
dtype=self.dtype)
x = array_ops.placeholder_with_default(
x_, shape=x_.shape if self.use_static_shape else None)
rhs_ = np.array([[1, 1]], dtype=self.dtype).T
rhs = array_ops.placeholder_with_default(
rhs_, shape=rhs_.shape if self.use_static_shape else None)
lower_upper, perm = linalg.lu(x)
y = linalg.lu_solve(lower_upper, perm, rhs, validate_args=True)
y_, perm_ = self.evaluate([y, perm])
self.assertAllEqual([[1, 0], [0, 1], [1, 0]], perm_)
expected_ = np.linalg.solve(x_, rhs_[np.newaxis])
if self.use_static_shape:
self.assertAllEqual(expected_.shape, y.shape)
self.assertAllClose(expected_, y_, atol=0., rtol=1e-3)
@test_util.run_all_in_graph_and_eager_modes
class LUSolveStatic(test.TestCase, _LUSolve):
use_static_shape = True
@test_util.run_all_in_graph_and_eager_modes
class LUSolveDynamic(test.TestCase, _LUSolve):
use_static_shape = False
if __name__ == "__main__":
test.main()