STT-tensorflow/tensorflow/python/kernel_tests/linalg_grad_test.py
Srinivas Vasudevan 89b80c5fb9 Add banded triangular solve op.
PiperOrigin-RevId: 317124054
Change-Id: I54f090d7583b21fa18788a2deb02262d9c8231be
2020-06-18 10:03:35 -07:00

280 lines
11 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow.ops.linalg_grad."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gradient_checker_v2
from tensorflow.python.ops import gradients_impl
from tensorflow.python.ops import linalg_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops.linalg import linalg_impl
from tensorflow.python.platform import test as test_lib
def _AddTest(test, op_name, testcase_name, fn):
test_name = '_'.join(['test', op_name, testcase_name])
if hasattr(test, test_name):
raise RuntimeError('Test %s defined more than once' % test_name)
setattr(test, test_name, fn)
class ShapeTest(test_lib.TestCase):
@test_util.run_deprecated_v1
def testBatchGradientUnknownSize(self):
with self.cached_session():
batch_size = constant_op.constant(3)
matrix_size = constant_op.constant(4)
batch_identity = array_ops.tile(
array_ops.expand_dims(
array_ops.diag(array_ops.ones([matrix_size])), 0),
[batch_size, 1, 1])
determinants = linalg_ops.matrix_determinant(batch_identity)
reduced = math_ops.reduce_sum(determinants)
sum_grad = gradients_impl.gradients(reduced, batch_identity)[0]
self.assertAllClose(batch_identity.eval(), self.evaluate(sum_grad))
class MatrixUnaryFunctorGradientTest(test_lib.TestCase):
pass # Filled in below
def _GetMatrixUnaryFunctorGradientTest(functor_, dtype_, shape_, **kwargs_):
@test_util.enable_control_flow_v2
@test_util.run_in_graph_and_eager_modes(use_gpu=True)
def Test(self):
def RandomInput():
np.random.seed(1)
return np.random.uniform(
low=-1.0, high=1.0,
size=np.prod(shape_)).reshape(shape_).astype(dtype_)
if functor_.__name__ == 'matrix_square_root':
# Square the input matrix to ensure that its matrix square root exists
f = lambda x: functor_(math_ops.matmul(x, x), **kwargs_)
else:
f = functor_
# Optimal stepsize for central difference is O(epsilon^{1/3}).
epsilon = np.finfo(dtype_).eps
delta = epsilon**(1.0 / 3.0)
# tolerance obtained by looking at actual differences using
# np.linalg.norm(theoretical-numerical, np.inf) on -mavx build
tol = 1e-6 if dtype_ == np.float64 else 0.05
theoretical, numerical = gradient_checker_v2.compute_gradient(
f, [RandomInput()], delta=delta)
self.assertAllClose(theoretical, numerical, atol=tol, rtol=tol)
return Test
class MatrixBinaryFunctorGradientTest(test_lib.TestCase):
pass # Filled in below
def _GetMatrixBinaryFunctorGradientTest(functor_,
dtype_,
shape_,
float32_tol_fudge=1.0,
**kwargs_):
@test_util.run_in_graph_and_eager_modes(use_gpu=True)
def Test(self):
def RandomInput():
np.random.seed(1)
return np.random.uniform(
low=-1.0, high=1.0,
size=np.prod(shape_)).reshape(shape_).astype(dtype_)
fixed = RandomInput()
# Optimal stepsize for central difference is O(epsilon^{1/3}).
epsilon = np.finfo(dtype_).eps
delta = epsilon**(1.0 / 3.0)
# tolerance obtained by looking at actual differences using
# np.linalg.norm(theoretical-numerical, np.inf) on -mavx build
tol = 1e-6 if dtype_ == np.float64 else float32_tol_fudge * 0.05
# check gradient w.r.t. left argument.
theoretical, numerical = gradient_checker_v2.compute_gradient(
lambda x: functor_(x, fixed, **kwargs_), [RandomInput()], delta=delta)
self.assertAllClose(theoretical, numerical, atol=tol, rtol=tol)
# check gradient w.r.t. right argument.
theoretical, numerical = gradient_checker_v2.compute_gradient(
lambda y: functor_(fixed, y, **kwargs_), [RandomInput()], delta=delta)
self.assertAllClose(theoretical, numerical, atol=tol, rtol=tol)
return Test
def _GetBandedTriangularSolveGradientTest(
functor_,
dtype_,
shape_,
float32_tol_fudge=1.0, # pylint: disable=redefined-outer-name
**kwargs_):
@test_util.run_in_graph_and_eager_modes(use_gpu=True)
def Test(self):
n = shape_[-1]
np.random.seed(1)
# Make sure invertible.
a_np = np.random.uniform(low=1.0, high=2.0, size=shape_).astype(dtype_)
a = constant_op.constant(a_np)
b_np = np.random.uniform(low=-1.0, high=1.0, size=[n, n]).astype(dtype_)
b = constant_op.constant(b_np)
epsilon = np.finfo(dtype_).eps
delta = epsilon**(1.0 / 3.0)
# tolerance obtained by looking at actual differences using
# np.linalg.norm(theoretical-numerical, np.inf) on -mavx build
tol = 1e-6 if dtype_ == np.float64 else float32_tol_fudge * 0.05
# check gradient w.r.t. left argument.
theoretical, numerical = gradient_checker_v2.compute_gradient(
lambda x: functor_(x, b, **kwargs_), [a], delta=delta)
self.assertAllClose(theoretical, numerical, atol=tol, rtol=tol)
# check gradient w.r.t. right argument.
theoretical, numerical = gradient_checker_v2.compute_gradient(
lambda y: functor_(a, y, **kwargs_), [b], delta=delta)
self.assertAllClose(theoretical, numerical, atol=tol, rtol=tol)
return Test
if __name__ == '__main__':
# Tests for gradients of binary matrix operations.
for dtype in np.float32, np.float64:
for size in 2, 5, 10:
# We skip the rank 4, size 10 case: it is slow and conceptually covered
# by the other cases.
for extra in [(), (2,), (3,)] + [(3, 2)] * (size < 10):
for adjoint in False, True:
shape = extra + (size, size)
name = '%s_%s_adj_%s' % (dtype.__name__, '_'.join(map(str, shape)),
str(adjoint))
_AddTest(MatrixBinaryFunctorGradientTest, 'MatrixSolveGradient', name,
_GetMatrixBinaryFunctorGradientTest(
linalg_ops.matrix_solve, dtype, shape, adjoint=adjoint))
for lower in True, False:
name = '%s_low_%s' % (name, lower)
if (name == 'float32_10_10_adj_False_low_True') and \
test_lib.is_built_with_rocm():
# Skip this one particular subtest on the ROCm platform
# It will fail because of 1 element in 10,000 mismatch,
# and the mismatch is minor (tolerance is 0.20, mismatch is 0,22)
# TODO(rocm) : investigate cause of mismatch and fix
continue
_AddTest(MatrixBinaryFunctorGradientTest,
'MatrixTriangularSolveGradient', name,
_GetMatrixBinaryFunctorGradientTest(
linalg_ops.matrix_triangular_solve,
dtype,
shape,
float32_tol_fudge=4.0,
adjoint=adjoint,
lower=lower))
band_shape = extra + (size // 2 + 1, size)
name = '%s_%s_adj_%s_low_%s' % (dtype.__name__, '_'.join(
map(str, band_shape)), str(adjoint), lower)
_AddTest(
MatrixBinaryFunctorGradientTest,
'BandedTriangularSolveGradient', name,
_GetBandedTriangularSolveGradientTest(
linalg_ops.banded_triangular_solve,
dtype,
band_shape,
float32_tol_fudge=4.0,
adjoint=adjoint,
lower=lower))
# Tests for gradients of unary matrix operations.
for dtype in np.float32, np.float64:
for size in 2, 5, 10:
# We skip the rank 4, size 10 case: it is slow and conceptually covered
# by the other cases.
for extra in [(), (2,), (3,)] + [(3, 2)] * (size < 10):
shape = extra + (size, size)
name = '%s_%s' % (dtype.__name__, '_'.join(map(str, shape)))
_AddTest(MatrixUnaryFunctorGradientTest, 'MatrixInverseGradient', name,
_GetMatrixUnaryFunctorGradientTest(linalg_ops.matrix_inverse,
dtype, shape))
_AddTest(MatrixUnaryFunctorGradientTest, 'MatrixExponentialGradient',
name,
_GetMatrixUnaryFunctorGradientTest(
linalg_impl.matrix_exponential, dtype, shape))
_AddTest(
MatrixUnaryFunctorGradientTest, 'MatrixDeterminantGradient', name,
_GetMatrixUnaryFunctorGradientTest(linalg_ops.matrix_determinant,
dtype, shape))
_AddTest(
MatrixUnaryFunctorGradientTest, 'LogMatrixDeterminantGradient',
name,
_GetMatrixUnaryFunctorGradientTest(
lambda x: linalg_ops.log_matrix_determinant(x)[1],
dtype, shape))
# The numerical Jacobian is consistently invalid for these four shapes
# because the matrix square root of the perturbed input doesn't exist
if shape in {(2, 5, 5), (3, 5, 5), (3, 10, 10), (3, 2, 5, 5)}:
# Alternative shape that consistently produces a valid numerical Jacobian
shape = extra + (size + 1, size + 1)
name = '%s_%s' % (dtype.__name__, '_'.join(map(str, shape)))
_AddTest(
MatrixUnaryFunctorGradientTest, 'MatrixSquareRootGradient', name,
_GetMatrixUnaryFunctorGradientTest(linalg_ops.matrix_square_root,
dtype, shape))
# Tests for gradients of matrix_solve_ls
for dtype in np.float32, np.float64:
for rows in 2, 5, 10:
for cols in 2, 5, 10:
for l2_regularization in 1e-6, 0.001, 1.0:
shape = (rows, cols)
name = '%s_%s_%s' % (dtype.__name__, '_'.join(map(str, shape)),
l2_regularization)
float32_tol_fudge = 5.1 if l2_regularization == 1e-6 else 4.0
_AddTest(
MatrixBinaryFunctorGradientTest,
'MatrixSolveLsGradient',
name,
# pylint: disable=long-lambda,g-long-lambda
_GetMatrixBinaryFunctorGradientTest(
(lambda a, b, l=l2_regularization:
linalg_ops.matrix_solve_ls(a, b, l)),
dtype,
shape,
float32_tol_fudge))
test_lib.main()