If we are unable to find any valid devices for a node, we can do a quick check to see if the node is even valid as per the op definition. This greatly improves the eager error message since there is no point in listing all the available kernels across all devices if we know none of them can match. Previous: NotFoundError: Could not find device for node: {{node GatherV2}} = GatherV2[Taxis=DT_INT32, Tindices=DT_FLOAT, Tparams=DT_INT32, batch_dims=0] All kernels registered for op GatherV2: device='CPU'; Tparams in [DT_INT64]; Tindices in [DT_INT32] device='CPU'; Tparams in [DT_INT64]; Tindices in [DT_INT64] device='CPU'; Tparams in [DT_INT32]; Tindices in [DT_INT32] ... Many more registrations ... New: InvalidArgumentError: Value for attr 'Tindices' of float is not in the list of allowed values: int32, int64 ; NodeDef: {{node GatherV2}}; ... PiperOrigin-RevId: 314963092 Change-Id: I8072e7ba9e6d316570a536780d78992691e620f1
562 lines
23 KiB
Python
562 lines
23 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for tensorflow.ops.tf.gather."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from absl.testing import parameterized
|
|
import numpy as np
|
|
|
|
from tensorflow.python.eager import backprop
|
|
from tensorflow.python.eager import context
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import errors
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import gradients_impl
|
|
from tensorflow.python.ops import resource_variable_ops
|
|
from tensorflow.python.ops import variables
|
|
from tensorflow.python.platform import test
|
|
|
|
_TEST_TYPES = (dtypes.int64, dtypes.float32,
|
|
dtypes.complex64, dtypes.complex128)
|
|
|
|
# TODO(virimia): Add a benchmark for gather_v2, with batch_dims and axis set.
|
|
|
|
|
|
def _to_str_elements(values):
|
|
"""Converts the inner list elements to strings."""
|
|
if isinstance(values, list):
|
|
return [_to_str_elements(value) for value in values]
|
|
else:
|
|
return str(values).encode("utf-8")
|
|
|
|
|
|
class GatherTest(test.TestCase, parameterized.TestCase):
|
|
|
|
def _buildParams(self, data, dtype):
|
|
data = data.astype(dtype.as_numpy_dtype)
|
|
# For complex types, add an index-dependent imaginary component so we can
|
|
# tell we got the right value.
|
|
if dtype.is_complex:
|
|
return data + 10j * data
|
|
return data
|
|
|
|
def testScalar1D(self):
|
|
with self.cached_session(use_gpu=True):
|
|
data = np.array([0, 1, 2, 3, 7, 5])
|
|
for dtype in _TEST_TYPES:
|
|
for indices in 4, [1, 2, 2, 4, 5]:
|
|
with self.subTest(dtype=dtype, indices=indices):
|
|
params_np = self._buildParams(data, dtype)
|
|
params = constant_op.constant(params_np)
|
|
indices_tf = constant_op.constant(indices)
|
|
gather_t = array_ops.gather(params, indices_tf)
|
|
gather_val = self.evaluate(gather_t)
|
|
np_val = params_np[indices]
|
|
self.assertAllEqual(np_val, gather_val)
|
|
self.assertEqual(np_val.shape, gather_t.get_shape())
|
|
|
|
def testScalar2D(self):
|
|
with self.session(use_gpu=True):
|
|
data = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8],
|
|
[9, 10, 11], [12, 13, 14]])
|
|
for dtype in _TEST_TYPES:
|
|
for axis in range(data.ndim):
|
|
with self.subTest(dtype=dtype, axis=axis):
|
|
params_np = self._buildParams(data, dtype)
|
|
params = constant_op.constant(params_np)
|
|
indices = constant_op.constant(2)
|
|
gather_t = array_ops.gather(params, indices, axis=axis)
|
|
gather_val = self.evaluate(gather_t)
|
|
self.assertAllEqual(np.take(params_np, 2, axis=axis), gather_val)
|
|
expected_shape = data.shape[:axis] + data.shape[axis + 1:]
|
|
self.assertEqual(expected_shape, gather_t.get_shape())
|
|
|
|
def testSimpleTwoD32(self):
|
|
with self.session(use_gpu=True):
|
|
data = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8],
|
|
[9, 10, 11], [12, 13, 14]])
|
|
for dtype in _TEST_TYPES:
|
|
for axis in range(data.ndim):
|
|
with self.subTest(dtype=dtype, axis=axis):
|
|
params_np = self._buildParams(data, dtype)
|
|
params = constant_op.constant(params_np)
|
|
# The indices must be in bounds for any axis.
|
|
indices = constant_op.constant([0, 1, 0, 2])
|
|
gather_t = array_ops.gather(params, indices, axis=axis)
|
|
gather_val = self.evaluate(gather_t)
|
|
self.assertAllEqual(np.take(params_np, [0, 1, 0, 2], axis=axis),
|
|
gather_val)
|
|
expected_shape = data.shape[:axis] + (4,) + data.shape[axis + 1:]
|
|
self.assertEqual(expected_shape, gather_t.get_shape())
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testHigherRank(self):
|
|
# We check that scalar and empty indices shapes work as well
|
|
shape = (2, 1, 3, 2)
|
|
for indices_shape in (), (0,), (2, 0), (2, 3):
|
|
for dtype in _TEST_TYPES:
|
|
for axis in range(len(shape)):
|
|
params = self._buildParams(np.random.randn(*shape), dtype)
|
|
indices = np.random.randint(shape[axis], size=indices_shape)
|
|
with self.subTest(indices_shape=indices_shape, dtype=dtype, axis=axis,
|
|
indices=indices):
|
|
with self.cached_session(use_gpu=True) as sess:
|
|
tf_params = constant_op.constant(params)
|
|
tf_indices = constant_op.constant(indices)
|
|
# Check that both positive and negative indices for axis work.
|
|
tf_axis = constant_op.constant(axis)
|
|
tf_negative_axis = constant_op.constant(-len(shape) + axis)
|
|
gather = array_ops.gather(tf_params, tf_indices, axis=tf_axis)
|
|
gather_negative_axis = array_ops.gather(
|
|
tf_params, tf_indices, axis=tf_negative_axis)
|
|
gather_value, gather_negative_axis_value = sess.run(
|
|
[gather, gather_negative_axis])
|
|
gather_np = np.take(params, indices, axis)
|
|
self.assertAllEqual(gather_np, gather_value)
|
|
self.assertAllEqual(gather_np, gather_negative_axis_value)
|
|
expected_shape = (params.shape[:axis] + indices.shape +
|
|
params.shape[axis + 1:])
|
|
self.assertEqual(expected_shape, gather.shape)
|
|
self.assertEqual(expected_shape, gather_negative_axis.shape)
|
|
|
|
# Test gradients
|
|
gather_grad = np.random.randn(
|
|
*gather.get_shape().as_list()).astype(dtype.as_numpy_dtype)
|
|
if dtype.is_complex:
|
|
gather_grad -= 1j * gather_grad
|
|
params_grad, indices_grad, axis_grad = gradients_impl.gradients(
|
|
gather, [tf_params, tf_indices, tf_axis], gather_grad)
|
|
self.assertEqual(indices_grad, None)
|
|
self.assertEqual(axis_grad, None)
|
|
if dtype.is_integer:
|
|
self.assertEqual(params_grad, None)
|
|
continue
|
|
# For axis 0, we are able to create an efficient IndexedSlices for
|
|
# the gradient.
|
|
if axis == 0:
|
|
self.assertEqual(type(params_grad), ops.IndexedSlices)
|
|
params_grad = ops.convert_to_tensor(params_grad)
|
|
correct_params_grad = np.zeros(shape).astype(dtype.as_numpy_dtype)
|
|
outer_dims = axis
|
|
inner_dims = len(shape) - axis - 1
|
|
gather_grad = gather_grad.reshape(
|
|
shape[:axis] + (indices.size,) + shape[axis + 1:])
|
|
for source_index, dest_index in enumerate(indices.flat):
|
|
dest_slice = ((slice(None),) * outer_dims + (dest_index,) +
|
|
(slice(None),) * inner_dims)
|
|
source_slice = ((slice(None),) * outer_dims + (source_index,) +
|
|
(slice(None),) * inner_dims)
|
|
correct_params_grad[dest_slice] += gather_grad[source_slice]
|
|
self.assertAllClose(
|
|
correct_params_grad,
|
|
self.evaluate(params_grad),
|
|
atol=2e-6,
|
|
rtol=2e-6)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testString(self):
|
|
params = np.array([[b"asdf", b"zxcv"], [b"qwer", b"uiop"]])
|
|
with self.cached_session():
|
|
self.assertAllEqual([b"qwer", b"uiop"],
|
|
array_ops.gather(params, 1, axis=0).eval())
|
|
self.assertAllEqual([b"asdf", b"qwer"],
|
|
array_ops.gather(params, 0, axis=1).eval())
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testUInt32AndUInt64(self):
|
|
for unsigned_type in (dtypes.uint32, dtypes.uint64):
|
|
with self.subTest(unsigned_type=unsigned_type):
|
|
params = self._buildParams(
|
|
np.array([[1, 2, 3], [7, 8, 9]]), unsigned_type)
|
|
with self.cached_session():
|
|
self.assertAllEqual([7, 8, 9],
|
|
array_ops.gather(params, 1, axis=0).eval())
|
|
self.assertAllEqual([1, 7],
|
|
array_ops.gather(params, 0, axis=1).eval())
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testUnknownIndices(self):
|
|
params = constant_op.constant([[0, 1, 2]])
|
|
indices = array_ops.placeholder(dtypes.int32)
|
|
gather_t = array_ops.gather(params, indices)
|
|
self.assertEqual(None, gather_t.get_shape())
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testUnknownAxis(self):
|
|
params = constant_op.constant([[0, 1, 2]])
|
|
indices = constant_op.constant([[0, 0], [0, 0]])
|
|
axis = array_ops.placeholder(dtypes.int32)
|
|
gather_t = array_ops.gather(params, indices, axis=axis)
|
|
# Rank 2 params with rank 2 indices results in a rank 3 shape.
|
|
self.assertEqual([None, None, None], gather_t.shape.as_list())
|
|
|
|
# If indices is also unknown the result rank is unknown.
|
|
indices = array_ops.placeholder(dtypes.int32)
|
|
gather_t = array_ops.gather(params, indices, axis=axis)
|
|
self.assertEqual(None, gather_t.shape)
|
|
|
|
def testBadIndicesType(self):
|
|
with self.assertRaisesRegex(
|
|
(TypeError, errors.InvalidArgumentError),
|
|
"float.* not in.* list of allowed values: int32, int64"):
|
|
self.evaluate(array_ops.gather([0], 0.))
|
|
|
|
@test_util.disable_xla(
|
|
"Assertion inside an op is not supported in XLA. Instead XLA clamps the "
|
|
"index to be in bounds and returns the indexed value there (Don't rely "
|
|
"on this behavior).")
|
|
def testBadIndicesCPU(self):
|
|
with test_util.force_cpu():
|
|
params = [[0, 1, 2], [3, 4, 5]]
|
|
with self.assertRaisesOpError(r"indices\[0,0\] = 7 is not in \[0, 2\)"):
|
|
self.evaluate(array_ops.gather(params, [[7]], axis=0))
|
|
with self.assertRaisesOpError(r"indices\[0,0\] = 7 is not in \[0, 3\)"):
|
|
self.evaluate(array_ops.gather(params, [[7]], axis=1))
|
|
|
|
def _disabledTestBadIndicesGPU(self):
|
|
# TODO disabled due to different behavior on GPU and CPU
|
|
# On GPU the bad indices do not raise error but fetch 0 values
|
|
if not test.is_gpu_available():
|
|
return
|
|
with self.session(use_gpu=True):
|
|
params = [[0, 1, 2], [3, 4, 5]]
|
|
with self.assertRaisesOpError(r"indices\[0,0\] = 7 is not in \[0, 2\)"):
|
|
array_ops.gather(params, [[7]], axis=0).eval()
|
|
with self.assertRaisesOpError(r"indices\[0,0\] = 7 is not in \[0, 3\)"):
|
|
array_ops.gather(params, [[7]], axis=1).eval()
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testBadAxis(self):
|
|
with self.session(use_gpu=True):
|
|
params = [0, 1, 2]
|
|
params_ph = array_ops.placeholder(dtypes.int32)
|
|
indices = 0
|
|
for bad_axis in (1, 2, -2):
|
|
# Shape inference can validate axis for known params rank.
|
|
with self.subTest(bad_axis=bad_axis):
|
|
with self.assertRaisesWithPredicateMatch(
|
|
ValueError, "Shape must be at least rank . but is rank 1"):
|
|
array_ops.gather(params, indices, axis=bad_axis)
|
|
# If params rank is unknown, an op error occurs.
|
|
with self.assertRaisesOpError(
|
|
r"Expected axis in the range \[-1, 1\), but got %s" % bad_axis):
|
|
array_ops.gather(params_ph, indices, axis=bad_axis).eval(
|
|
feed_dict={params_ph: params})
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testEmptySlices(self):
|
|
with self.session(use_gpu=True):
|
|
for dtype in _TEST_TYPES:
|
|
for itype in np.int32, np.int64:
|
|
# Leading axis gather.
|
|
with self.subTest(dtype=dtype, itype=itype):
|
|
params = np.zeros((7, 0, 0), dtype=dtype.as_numpy_dtype)
|
|
indices = np.array([3, 4], dtype=itype)
|
|
gather = array_ops.gather(params, indices, axis=0)
|
|
self.assertAllEqual(gather.eval(), np.zeros((2, 0, 0)))
|
|
|
|
# Middle axis gather.
|
|
params = np.zeros((0, 7, 0), dtype=dtype.as_numpy_dtype)
|
|
gather = array_ops.gather(params, indices, axis=1)
|
|
self.assertAllEqual(gather.eval(), np.zeros((0, 2, 0)))
|
|
|
|
# Trailing axis gather.
|
|
params = np.zeros((0, 0, 7), dtype=dtype.as_numpy_dtype)
|
|
gather = array_ops.gather(params, indices, axis=2)
|
|
self.assertAllEqual(gather.eval(), np.zeros((0, 0, 2)))
|
|
|
|
@parameterized.parameters([
|
|
# batch_dims=0 (equivalent to tf.gather)
|
|
dict( # 2D indices
|
|
batch_dims=0,
|
|
params=[6, 7, 8, 9],
|
|
indices=[[2, 1], [0, 3]],
|
|
expected=[[8, 7], [6, 9]]),
|
|
dict( # 3D indices
|
|
batch_dims=0,
|
|
params=[6, 7, 8, 9],
|
|
indices=[[[3, 1], [2, 0]], [[0, 3], [2, 2]]],
|
|
expected=[[[9, 7], [8, 6]], [[6, 9], [8, 8]]]),
|
|
dict( # 4D indices
|
|
batch_dims=0,
|
|
params=[8, 9],
|
|
indices=[[[[0, 1], [1, 0]], [[0, 0], [1, 1]]],
|
|
[[[1, 1], [0, 0]], [[0, 1], [1, 0]]]],
|
|
expected=[[[[8, 9], [9, 8]], [[8, 8], [9, 9]]],
|
|
[[[9, 9], [8, 8]], [[8, 9], [9, 8]]]]),
|
|
|
|
# batch_dims=indices.shape.ndims - 1
|
|
# (equivalent to tf.compat.v1.batch_gather)
|
|
dict( # 2D indices (1 batch dim)
|
|
batch_dims=1,
|
|
params=[[10, 11, 12, 13], [20, 21, 22, 23]],
|
|
indices=[[2, 1], [0, 3]],
|
|
expected=[[12, 11], [20, 23]]),
|
|
dict( # 3D indices (2 batch dims)
|
|
batch_dims=2,
|
|
params=[[[100, 101], [110, 111]], [[200, 201], [210, 211]]],
|
|
indices=[[[0, 1], [1, 0]], [[0, 0], [1, 1]]],
|
|
expected=[[[100, 101], [111, 110]], [[200, 200], [211, 211]]]),
|
|
dict( # 2D indices (1 batch dim)
|
|
batch_dims=-1,
|
|
params=[[10, 11, 12, 13], [20, 21, 22, 23]],
|
|
indices=[[2, 1], [0, 3]],
|
|
expected=[[12, 11], [20, 23]]),
|
|
dict( # 3D indices (2 batch dims)
|
|
batch_dims=-1,
|
|
params=[[[100, 101], [110, 111]], [[200, 201], [210, 211]]],
|
|
indices=[[[0, 1], [1, 0]], [[0, 0], [1, 1]]],
|
|
expected=[[[100, 101], [111, 110]], [[200, 200], [211, 211]]]),
|
|
|
|
# batch_dims=indices.shape.ndims
|
|
dict( # 1D indices (1 batch dim)
|
|
batch_dims=1,
|
|
params=[[10, 11, 12, 13], [20, 21, 22, 23]],
|
|
indices=[2, 1],
|
|
expected=[12, 21]),
|
|
dict( # 2D indices (2 batch dim)
|
|
batch_dims=2,
|
|
params=[[[100, 101, 102, 103], [110, 111, 112, 113]],
|
|
[[200, 201, 202, 203], [210, 211, 212, 213]]],
|
|
indices=[[2, 1], [0, 3]],
|
|
expected=[[102, 111], [200, 213]]),
|
|
|
|
# 0 < batch_dims < indices.shape.ndims - 1
|
|
dict( # 3D indices (1 batch dim)
|
|
batch_dims=1,
|
|
params=[[10, 11, 12, 13], [20, 21, 22, 23]],
|
|
indices=[[[3, 1], [2, 0]], [[0, 3], [2, 2]]],
|
|
expected=[[[13, 11], [12, 10]], [[20, 23], [22, 22]]]),
|
|
dict( # 4D indices (1 batch dim)
|
|
batch_dims=1,
|
|
params=[[6, 7], [8, 9]],
|
|
indices=[[[[0, 1], [1, 0]], [[0, 0], [1, 1]]],
|
|
[[[1, 1], [0, 0]], [[0, 1], [1, 0]]]],
|
|
expected=[[[[6, 7], [7, 6]], [[6, 6], [7, 7]]],
|
|
[[[9, 9], [8, 8]], [[8, 9], [9, 8]]]]),
|
|
dict( # 4D indices (2 batch dims)
|
|
batch_dims=2,
|
|
params=[[[2, 3], [4, 5]], [[6, 7], [8, 9]]],
|
|
indices=[[[[0, 1], [1, 0]], [[0, 0], [1, 1]]],
|
|
[[[1, 1], [0, 0]], [[0, 1], [1, 0]]]],
|
|
expected=[[[[2, 3], [3, 2]], [[4, 4], [5, 5]]],
|
|
[[[7, 7], [6, 6]], [[8, 9], [9, 8]]]]),
|
|
|
|
# axis > 0
|
|
dict( # 3D indices, batch_dims=1, axis=2
|
|
# params.shape = [I1, J1, J2] = [2, 2, 3]
|
|
# indices.shape = [I1, K1, K2] = [2, 1, 5]
|
|
# result.shape = [I1, J1, K1, K2] = [2, 2, 1, 5]
|
|
batch_dims=1,
|
|
axis=2,
|
|
params=[[[10, 11, 12], [13, 14, 15]], [[20, 21, 22], [23, 24, 25]]],
|
|
indices=[[[0, 1, 2, 1, 0]], [[0, 1, 2, 1, 0]]],
|
|
expected=[[[[10, 11, 12, 11, 10]], [[13, 14, 15, 14, 13]]],
|
|
[[[20, 21, 22, 21, 20]], [[23, 24, 25, 24, 23]]]]),
|
|
dict( # 3D indices, batch_dims=None, axis=1
|
|
batch_dims=None,
|
|
axis=1,
|
|
params=[[10, 11, 12], [13, 14, 15]],
|
|
indices=[1, 0],
|
|
expected=[[11, 10], [14, 13]]),
|
|
])
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testBatchDims(self, params, indices, batch_dims, expected=None,
|
|
axis=None):
|
|
result = array_ops.gather(params, indices, axis=axis, batch_dims=batch_dims)
|
|
self.assertAllEqual(expected, result)
|
|
|
|
# Test the gradients shape.
|
|
if context.executing_eagerly():
|
|
with backprop.GradientTape() as tape:
|
|
zeros = array_ops.zeros_like(params, dtype=dtypes.float32)
|
|
tape.watch(zeros)
|
|
values = zeros * 2 + zeros
|
|
result = array_ops.gather(
|
|
values, indices, axis=axis, batch_dims=batch_dims)
|
|
gradients = tape.gradient(result, zeros)
|
|
else:
|
|
zeros = array_ops.zeros_like(params, dtype=dtypes.float32)
|
|
values = zeros * 2 + zeros
|
|
result = array_ops.gather(
|
|
values, indices, axis=axis, batch_dims=batch_dims)
|
|
gradients = gradients_impl.gradients(result, [zeros])[0]
|
|
|
|
self.assertAllEqual(array_ops.shape(params), array_ops.shape(gradients))
|
|
|
|
# Run the same test for strings.
|
|
params = _to_str_elements(params)
|
|
expected = _to_str_elements(expected)
|
|
result = array_ops.gather(
|
|
params, indices, axis=axis, batch_dims=batch_dims)
|
|
|
|
self.assertAllEqual(expected, result)
|
|
|
|
@parameterized.parameters([
|
|
dict(
|
|
params_shape=[2, 3, 4, 5, 6, 7],
|
|
indices_shape=[2, 3, 8, 9, 10],
|
|
batch_dims=2,
|
|
axis=2,
|
|
output_shape=[2, 3, 8, 9, 10, 5, 6, 7]
|
|
# = params.shape[:2] + indices.shape[2:] + params.shape[3:]
|
|
),
|
|
dict(
|
|
params_shape=[2, 3, 4, 5, 6, 7],
|
|
indices_shape=[2, 3, 8, 9, 10],
|
|
batch_dims=2,
|
|
axis=3,
|
|
output_shape=[2, 3, 4, 8, 9, 10, 6, 7]
|
|
# = params.shape[:3] + indices.shape[2:] + params.shape[4:]
|
|
),
|
|
dict(
|
|
params_shape=[2, 3, 4, 5, 6, 7],
|
|
indices_shape=[2, 3, 8, 9, 10],
|
|
batch_dims=2,
|
|
axis=4,
|
|
output_shape=[2, 3, 4, 5, 8, 9, 10, 7]
|
|
# = params.shape[:4] + indices.shape[2:] + params.shape[5:]
|
|
),
|
|
dict(
|
|
params_shape=[2, 3, 4, 5, 6, 7],
|
|
indices_shape=[2, 3, 8, 9, 10],
|
|
batch_dims=2,
|
|
axis=5,
|
|
output_shape=[2, 3, 4, 5, 6, 8, 9, 10]
|
|
# = params.shape[:5] + indices.shape[2:] + params.shape[6:]
|
|
),
|
|
dict(
|
|
params_shape=[2, 3, 4, 5, 6, 7],
|
|
indices_shape=[2, 3, 8, 9, 10],
|
|
batch_dims=2,
|
|
axis=-4,
|
|
output_shape=[2, 3, 8, 9, 10, 5, 6, 7]
|
|
# = params.shape[:2] + indices.shape[2:] + params.shape[3:]
|
|
),
|
|
dict(
|
|
params_shape=[2, 3, 4, 5, 6, 7],
|
|
indices_shape=[2, 3, 8, 9, 10],
|
|
batch_dims=2,
|
|
axis=-3,
|
|
output_shape=[2, 3, 4, 8, 9, 10, 6, 7]
|
|
# = params.shape[:3] + indices.shape[2:] + params.shape[4:]
|
|
),
|
|
dict(
|
|
params_shape=[2, 3, 4, 5, 6, 7],
|
|
indices_shape=[2, 3, 8, 9, 10],
|
|
batch_dims=2,
|
|
axis=-2,
|
|
output_shape=[2, 3, 4, 5, 8, 9, 10, 7]
|
|
# = params.shape[:4] + indices.shape[2:] + params.shape[5:]
|
|
),
|
|
dict(
|
|
params_shape=[2, 3, 4, 5, 6, 7],
|
|
indices_shape=[2, 3, 8, 9, 10],
|
|
batch_dims=2,
|
|
axis=-1,
|
|
output_shape=[2, 3, 4, 5, 6, 8, 9, 10]
|
|
# = params.shape[:5] + indices.shape[2:] + params.shape[6:]
|
|
),
|
|
])
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testBatchDimsMatchesPythonBatching(self, params_shape, indices_shape,
|
|
batch_dims, axis, output_shape):
|
|
"""Checks that batch_dims matches multiple calls to tf.gather()."""
|
|
# Generate a `params` tensor with the indicated shape.
|
|
params_size = np.prod(params_shape)
|
|
params = np.reshape(np.arange(params_size), params_shape)
|
|
|
|
# Generate an `indices` tensor with the indicated shape, where each index
|
|
# is within the appropriate range.
|
|
indices_size = np.prod(indices_shape)
|
|
indices = np.reshape(np.arange(indices_size), indices_shape)
|
|
indices = indices % params_shape[axis]
|
|
|
|
# Perform repeated (batched) gather operations with numpy, to find the
|
|
# expected result.
|
|
expected = self._batchNumpyGather(params, indices, axis, batch_dims)
|
|
|
|
# On Windows, we get an exception if we pass in the transformed numpy
|
|
# arrays ("Failed to convert numpy ndarray to a Tensor (Unsupported
|
|
# feed type)."); so convert them back to lists before calling tf.gather.
|
|
params = params.tolist()
|
|
indices = indices.tolist()
|
|
|
|
result = array_ops.gather(params, indices, axis=axis, batch_dims=batch_dims)
|
|
self.assertAllEqual(output_shape, result.shape.as_list())
|
|
self.assertAllEqual(expected, result)
|
|
|
|
# Run the same test for strings.
|
|
params = _to_str_elements(params)
|
|
expected = _to_str_elements(expected.tolist())
|
|
result = array_ops.gather(
|
|
params, indices, axis=axis, batch_dims=batch_dims)
|
|
|
|
self.assertAllEqual(output_shape, result.shape.as_list())
|
|
self.assertAllEqual(expected, result)
|
|
|
|
def _batchNumpyGather(self, params, indices, axis, batch_dims):
|
|
"""Performs a batch gather by making recursive calls to np.take().
|
|
|
|
This is used by testBatchDims() to construct the expected value.
|
|
|
|
Args:
|
|
params: A numpy array
|
|
indices: A numpy array
|
|
axis: An integer
|
|
batch_dims: An integer
|
|
Returns:
|
|
A numpy array
|
|
"""
|
|
if batch_dims == 0:
|
|
return np.take(params, indices, axis=axis)
|
|
self.assertEqual(params.shape[0], indices.shape[0])
|
|
if axis > 0:
|
|
axis -= 1
|
|
return np.stack([
|
|
self._batchNumpyGather(params[i], indices[i], axis, batch_dims - 1)
|
|
for i in range(params.shape[0])
|
|
])
|
|
|
|
@test_util.run_v1_only("RefVariable is not supported in v2")
|
|
def testGatherRefVariable(self):
|
|
with self.cached_session():
|
|
v = variables.RefVariable(constant_op.constant([[1, 2], [3, 4], [5, 6]]))
|
|
self.evaluate(variables.global_variables_initializer())
|
|
gather = array_ops.gather(v, [0, 2])
|
|
if not context.executing_eagerly(): # .op doesn't make sense in Eager
|
|
self.assertEqual("GatherV2", gather.op.name)
|
|
self.assertAllEqual([[1, 2], [5, 6]], gather)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testGatherResourceVariable(self):
|
|
with self.cached_session():
|
|
v = resource_variable_ops.ResourceVariable(
|
|
constant_op.constant([[1, 2], [3, 4], [5, 6]]))
|
|
self.evaluate(variables.global_variables_initializer())
|
|
gather = array_ops.gather(v, [0, 2])
|
|
if not context.executing_eagerly(): # .op doesn't make sense in Eager
|
|
self.assertEqual("ResourceGather", gather.op.inputs[0].op.type)
|
|
self.assertAllEqual([[1, 2], [5, 6]], gather)
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|