STT-tensorflow/tensorflow/python/kernel_tests/division_past_test.py
Gaurav Jain b17d53c0cd Replace a few calls of Session run with evaluate
In order to support tests running in eager mode we need to avoid
unnecessary use of Sessions in tests. This moves to remove some
of the uses of the `run` function in favor of `evaluate`.

PiperOrigin-RevId: 223009795
2018-11-27 10:09:00 -08:00

73 lines
2.3 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for division with division imported from __future__.
This file should be exactly the same as division_past_test.py except
for the __future__ division line.
"""
from __future__ import absolute_import
# from __future__ import division # Intentionally skip this import
from __future__ import print_function
import numpy as np
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import ops
from tensorflow.python.platform import test
class DivisionTestCase(test.TestCase):
def testDivision(self):
"""Test all the different ways to divide."""
values = [1, 2, 7, 11]
functions = (lambda x: x), constant_op.constant
dtypes = np.int8, np.int16, np.int32, np.int64, np.float32, np.float64
tensors = []
checks = []
def check(x, y):
x = ops.convert_to_tensor(x)
y = ops.convert_to_tensor(y)
tensors.append((x, y))
def f(x, y):
self.assertEqual(x.dtype, y.dtype)
self.assertEqual(x, y)
checks.append(f)
with self.cached_session() as sess:
for dtype in dtypes:
for x in map(dtype, values):
for y in map(dtype, values):
for fx in functions:
for fy in functions:
tf_x = fx(x)
tf_y = fy(y)
div = x / y
tf_div = tf_x / tf_y
check(div, tf_div)
floordiv = x // y
tf_floordiv = tf_x // tf_y
check(floordiv, tf_floordiv)
# Do only one sess.run for speed
for f, (x, y) in zip(checks, self.evaluate(tensors)):
f(x, y)
if __name__ == "__main__":
test.main()