STT-tensorflow/tensorflow/python/kernel_tests/determinant_op_test.py
Gaurav Jain 4890b781b6 Annotate tests as @run_v1_only
Skip individual test cases or entire suites that are not
running in v1. Also replace some @run_deprecated_v1
annotations since simply running the test in graph mode
was not enough.

PiperOrigin-RevId: 224604547
2018-12-07 17:41:47 -08:00

221 lines
8.3 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow.ops.tf.MatrixDeterminant."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.client import session
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import gen_linalg_ops
from tensorflow.python.ops import linalg_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import variables
from tensorflow.python.platform import benchmark
from tensorflow.python.platform import test
class DeterminantOpTest(test.TestCase):
def _compareDeterminantBase(self, matrix_x, tf_ans):
out = self.evaluate(tf_ans)
shape = matrix_x.shape
if shape[-1] == 0 and shape[-2] == 0:
np_ans = np.ones(shape[:-2]).astype(matrix_x.dtype)
else:
np_ans = np.array(np.linalg.det(matrix_x)).astype(matrix_x.dtype)
self.assertShapeEqual(np_ans, tf_ans)
self.assertAllClose(np_ans, out, atol=5e-5)
def _compareLogDeterminantBase(self, matrix_x, tf_ans):
sign_tf, abs_log_det_tf = tf_ans
shape = matrix_x.shape
if shape[-1] == 0 or shape[-2] == 0:
np_sign, np_ans = (1.0, np.zeros(shape[:-2]).astype(matrix_x.dtype))
else:
np_sign, np_ans = np.linalg.slogdet(matrix_x)
np_ans = np_ans.astype(matrix_x.dtype)
self.assertShapeEqual(np_ans, abs_log_det_tf)
sign_tf_val = self.evaluate(sign_tf)
abs_log_det_tf_val = self.evaluate(abs_log_det_tf)
self.assertAllClose(
sign_tf_val * np.exp(abs_log_det_tf_val),
np_sign * np.exp(np_ans),
atol=5e-5)
def _compareDeterminant(self, matrix_x):
with test_util.use_gpu():
self._compareDeterminantBase(matrix_x,
linalg_ops.matrix_determinant(matrix_x))
self._compareLogDeterminantBase(
matrix_x, gen_linalg_ops.log_matrix_determinant(matrix_x))
def testBasic(self):
# 2x2 matrices
self._compareDeterminant(np.array([[2., 3.], [3., 4.]]).astype(np.float32))
self._compareDeterminant(np.array([[0., 0.], [0., 0.]]).astype(np.float32))
# 5x5 matrices (Eigen forces LU decomposition)
self._compareDeterminant(
np.array([[2., 3., 4., 5., 6.], [3., 4., 9., 2., 0.], [
2., 5., 8., 3., 8.
], [1., 6., 7., 4., 7.], [2., 3., 4., 5., 6.]]).astype(np.float32))
# A multidimensional batch of 2x2 matrices
self._compareDeterminant(np.random.rand(3, 4, 5, 2, 2).astype(np.float32))
def testBasicDouble(self):
# 2x2 matrices
self._compareDeterminant(np.array([[2., 3.], [3., 4.]]).astype(np.float64))
self._compareDeterminant(np.array([[0., 0.], [0., 0.]]).astype(np.float64))
# 5x5 matrices (Eigen forces LU decomposition)
self._compareDeterminant(
np.array([[2., 3., 4., 5., 6.], [3., 4., 9., 2., 0.], [
2., 5., 8., 3., 8.
], [1., 6., 7., 4., 7.], [2., 3., 4., 5., 6.]]).astype(np.float64))
# A multidimensional batch of 2x2 matrices
self._compareDeterminant(np.random.rand(3, 4, 5, 2, 2).astype(np.float64))
def testBasicComplex64(self):
# 2x2 matrices
self._compareDeterminant(
np.array([[2., 3.], [3., 4.]]).astype(np.complex64))
self._compareDeterminant(
np.array([[0., 0.], [0., 0.]]).astype(np.complex64))
self._compareDeterminant(
np.array([[1. + 1.j, 1. - 1.j], [-1. + 1.j, -1. - 1.j]]).astype(
np.complex64))
# 5x5 matrices (Eigen forces LU decomposition)
self._compareDeterminant(
np.array([[2., 3., 4., 5., 6.], [3., 4., 9., 2., 0.], [
2., 5., 8., 3., 8.
], [1., 6., 7., 4., 7.], [2., 3., 4., 5., 6.]]).astype(np.complex64))
# A multidimensional batch of 2x2 matrices
self._compareDeterminant(np.random.rand(3, 4, 5, 2, 2).astype(np.complex64))
def testBasicComplex128(self):
# 2x2 matrices
self._compareDeterminant(
np.array([[2., 3.], [3., 4.]]).astype(np.complex128))
self._compareDeterminant(
np.array([[0., 0.], [0., 0.]]).astype(np.complex128))
self._compareDeterminant(
np.array([[1. + 1.j, 1. - 1.j], [-1. + 1.j, -1. - 1.j]]).astype(
np.complex128))
# 5x5 matrices (Eigen forces LU decomposition)
self._compareDeterminant(
np.array([[2., 3., 4., 5., 6.], [3., 4., 9., 2., 0.], [
2., 5., 8., 3., 8.
], [1., 6., 7., 4., 7.], [2., 3., 4., 5., 6.]]).astype(np.complex128))
# A multidimensional batch of 2x2 matrices
self._compareDeterminant(
np.random.rand(3, 4, 5, 2, 2).astype(np.complex128))
def testInfiniteDeterminant(self):
max_double = np.finfo("d").max
huge_matrix = np.array([[max_double, 0.0], [0.0, max_double]])
self._compareDeterminant(huge_matrix)
@test_util.run_v1_only("b/120545219")
def testNonSquareMatrix(self):
# When the determinant of a non-square matrix is attempted we should return
# an error
with self.assertRaises(ValueError):
linalg_ops.matrix_determinant(
np.array([[1., 2., 3.], [3., 5., 4.]]).astype(np.float32))
@test_util.run_v1_only("b/120545219")
def testWrongDimensions(self):
# The input to the determinant should be a 2-dimensional tensor.
tensor1 = constant_op.constant([1., 2.])
with self.assertRaises(ValueError):
linalg_ops.matrix_determinant(tensor1)
def testEmpty(self):
self._compareDeterminant(np.empty([0, 2, 2]))
self._compareDeterminant(np.empty([2, 0, 0]))
@test_util.run_v1_only("b/120545219")
def testConcurrentExecutesWithoutError(self):
with self.session(use_gpu=True) as sess:
matrix1 = random_ops.random_normal([5, 5], seed=42)
matrix2 = random_ops.random_normal([5, 5], seed=42)
det1 = linalg_ops.matrix_determinant(matrix1)
det2 = linalg_ops.matrix_determinant(matrix2)
det1_val, det2_val = self.evaluate([det1, det2])
self.assertEqual(det1_val, det2_val)
class MatrixDeterminantBenchmark(test.Benchmark):
shapes = [
(4, 4),
(10, 10),
(16, 16),
(101, 101),
(256, 256),
(1000, 1000),
(1024, 1024),
(2048, 2048),
(513, 4, 4),
(513, 16, 16),
(513, 256, 256),
]
def _GenerateMatrix(self, shape):
batch_shape = shape[:-2]
shape = shape[-2:]
assert shape[0] == shape[1]
n = shape[0]
matrix = np.ones(shape).astype(np.float32) / (
2.0 * n) + np.diag(np.ones(n).astype(np.float32))
return variables.Variable(np.tile(matrix, batch_shape + (1, 1)))
def benchmarkMatrixDeterminantOp(self):
for shape in self.shapes:
with ops.Graph().as_default(), session.Session(
config=benchmark.benchmark_config()) as sess, ops.device("/cpu:0"):
matrix = self._GenerateMatrix(shape)
d = linalg_ops.matrix_determinant(matrix)
variables.global_variables_initializer().run()
self.run_op_benchmark(
sess,
control_flow_ops.group(
d,),
min_iters=25,
name="matrix_determinant_cpu_{shape}".format(shape=shape))
if test.is_gpu_available(True):
with ops.Graph().as_default(), session.Session(
config=benchmark.benchmark_config()) as sess, ops.device("/gpu:0"):
matrix = self._GenerateMatrix(shape)
d = linalg_ops.matrix_determinant(matrix)
variables.global_variables_initializer().run()
self.run_op_benchmark(
sess,
control_flow_ops.group(
d,),
min_iters=25,
name="matrix_determinant_gpu_{shape}".format(shape=shape))
if __name__ == "__main__":
test.main()