STT-tensorflow/tensorflow/python/kernel_tests/cwise_ops_test.py
Andrew Selle 3d0dac26f5 Use subTest to improve error reporting on test failures in cwise_ops_test.py.
PiperOrigin-RevId: 310422205
Change-Id: I67ba3406fbf7df3ceef59ed3bd084d406cef23bd
2020-05-07 13:13:01 -07:00

1290 lines
48 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functional tests for coefficient-wise operations."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes as dtypes_lib
from tensorflow.python.framework import errors
from tensorflow.python.framework import ops
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gradient_checker
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_grad # pylint: disable=unused-import
from tensorflow.python.platform import test
_ADD = lambda x, y: x + y
_SUB = lambda x, y: x - y
_MUL = lambda x, y: x * y
_POW = lambda x, y: x**y
_TRUEDIV = lambda x, y: x / y
_FLOORDIV = lambda x, y: x // y
_MOD = lambda x, y: x % y
_LT = lambda x, y: x < y
_LE = lambda x, y: x <= y
_GT = lambda x, y: x > y
_GE = lambda x, y: x >= y
_AND = lambda x, y: x & y
_OR = lambda x, y: x | y
_XOR = lambda x, y: x ^ y
_INV = lambda x: ~x
# TODO(zongheng): it'd be great to factor out this function and various random
# SparseTensor gen funcs.
def _sparsify(x, thresh=0.5, index_dtype=np.int64):
x[x < thresh] = 0
non_zero = np.where(x)
x_indices = np.vstack(non_zero).astype(index_dtype).T
x_values = x[non_zero]
x_shape = x.shape
return sparse_tensor.SparseTensor(
indices=x_indices, values=x_values, dense_shape=x_shape), x_values
def _default_tolerance(dtype):
"""Returns a sensible default tolerance for comparing results of a given type.
Args:
dtype: A datatype.
"""
if dtype == np.float16:
return 5e-3
elif dtype in (np.float32, np.complex64):
return 1e-3
elif dtype in (np.float64, np.complex128):
return 1e-5
else:
return None # Fail fast for unexpected types
class ComparisonOpTest(test.TestCase):
def _compareScalar(self, func, x, y, dtype):
with test_util.use_gpu():
out = func(
ops.convert_to_tensor(np.array([x]).astype(dtype)),
ops.convert_to_tensor(np.array([y]).astype(dtype)))
ret = self.evaluate(out)
return ret[0]
def testScalarCompareScalar(self):
dtypes = [np.float16, np.float32, np.float64, np.int32, np.int64]
data = [-1, 0, 1]
for t in dtypes:
for x in data:
for y in data:
with self.subTest(t=t, x=x, y=y):
self.assertEqual(self._compareScalar(math_ops.less, x, y, t), x < y)
self.assertEqual(
self._compareScalar(math_ops.less_equal, x, y, t), x <= y)
self.assertEqual(
self._compareScalar(math_ops.greater, x, y, t), x > y)
self.assertEqual(
self._compareScalar(math_ops.greater_equal, x, y, t), x >= y)
self.assertEqual(
self._compareScalar(math_ops.equal, x, y, t), x == y)
self.assertEqual(
self._compareScalar(math_ops.not_equal, x, y, t), x != y)
data = [-1, 0, 1, -1j, 1j, 1 + 1j, 1 - 1j]
for t in [np.complex64, np.complex128]:
for x in data:
for y in data:
with self.subTest(t=t, x=x, y=y):
self.assertEqual(
self._compareScalar(math_ops.equal, x, y, t), x == y)
self.assertEqual(
self._compareScalar(math_ops.not_equal, x, y, t), x != y)
def _compare(self, x, y, np_func, tf_func):
np_ans = np_func(x, y)
with test_util.use_gpu():
out = tf_func(ops.convert_to_tensor(x), ops.convert_to_tensor(y))
tf_ans = self.evaluate(out)
self.assertAllEqual(np_ans, tf_ans)
def testTensorCompareTensor(self):
x = np.linspace(-15, 15, 6).reshape(1, 3, 2)
y = np.linspace(20, -10, 6).reshape(1, 3, 2)
for t in [np.float16, np.float32, np.float64, np.int32, np.int64]:
with self.subTest(t=t):
xt = x.astype(t)
yt = y.astype(t)
self._compare(xt, yt, np.less, math_ops.less)
self._compare(xt, yt, np.less_equal, math_ops.less_equal)
self._compare(xt, yt, np.greater, math_ops.greater)
self._compare(xt, yt, np.greater_equal, math_ops.greater_equal)
self._compare(xt, yt, np.equal, math_ops.equal)
self._compare(xt, yt, np.not_equal, math_ops.not_equal)
# Complex types do not support ordering but do support equality tests.
for t in [np.complex64, np.complex128]:
with self.subTest(t=t):
xt = x.astype(t)
xt -= 1j * xt
yt = y.astype(t)
yt -= 1j * yt
self._compare(xt, yt, np.equal, math_ops.equal)
self._compare(xt, yt, np.not_equal, math_ops.not_equal)
def _compareBCast(self, xs, ys, dtype, np_func, tf_func):
x = np.linspace(-15, 15, np.prod(xs)).astype(dtype).reshape(xs)
y = np.linspace(20, -10, np.prod(ys)).astype(dtype).reshape(ys)
if dtype in (np.complex64, np.complex128):
x -= 1j * x
y -= 1j * y
self._compare(x, y, np_func, tf_func)
self._compare(y, x, np_func, tf_func)
def _testBCastByFunc(self, np_func, tf_func, include_complex=False):
shapes = [
([1, 3, 2], [1]),
([1, 3, 2], [2]),
([1, 3, 2], [3, 2]),
([1, 3, 2], [3, 1]),
([1, 3, 2], [1, 3, 2]),
([1, 3, 2], [2, 3, 1]),
([1, 3, 2], [2, 1, 1]),
([1, 3, 2], [1, 3, 1]),
([2, 1, 5], [2, 3, 1]),
([2, 0, 5], [2, 0, 1]),
([2, 3, 0], [2, 3, 1]),
]
dtypes = [
np.float16,
np.float32,
np.float64,
np.int32,
np.int64,
]
if include_complex:
dtypes.extend([np.complex64, np.complex128])
for (xs, ys) in shapes:
for dtype in dtypes:
with self.subTest(xs=xs, ys=ys, dtype=dtype):
self._compareBCast(xs, ys, dtype, np_func, tf_func)
def testBCastLess(self):
self._testBCastByFunc(np.less, math_ops.less)
def testBCastLessEqual(self):
self._testBCastByFunc(np.less_equal, math_ops.less_equal)
def testBCastGreater(self):
self._testBCastByFunc(np.greater, math_ops.greater)
def testBCastGreaterEqual(self):
self._testBCastByFunc(np.greater_equal, math_ops.greater_equal)
def testBCastEqual(self):
self._testBCastByFunc(np.equal, math_ops.equal, include_complex=True)
def testBCastNotEqual(self):
self._testBCastByFunc(
np.not_equal, math_ops.not_equal, include_complex=True)
def testShapeMismatch(self):
dtypes = [np.float16, np.float32, np.float64, np.int32, np.int64]
funcs = [
math_ops.less, math_ops.less_equal, math_ops.greater,
math_ops.greater_equal, math_ops.equal, math_ops.not_equal
]
x = np.arange(0, 10).reshape([2, 5])
y = np.arange(0, 10).reshape([5, 2])
for t in dtypes:
for f in funcs:
with self.subTest(t=t, f=f):
with self.assertRaisesRegexp(
(ValueError, errors.InvalidArgumentError),
"Incompatible shapes|Dimensions must be equal"):
f(x.astype(t), y.astype(t))
class LogicalOpTest(test.TestCase):
def _compareBinary(self, x, y, np_func, tf_func, use_gpu=False):
np_ans = np_func(x, y)
with test_util.device(use_gpu=use_gpu):
inx = ops.convert_to_tensor(x)
iny = ops.convert_to_tensor(y)
out = tf_func(inx, iny)
tf_val = self.evaluate(out)
self.assertEqual(out.dtype, dtypes_lib.bool)
self.assertAllEqual(np_ans, tf_val)
self.assertShapeEqual(np_ans, out)
def _not(self, x, use_gpu=False):
np_ans = np.logical_not(x)
with test_util.device(use_gpu=use_gpu):
out = math_ops.logical_not(ops.convert_to_tensor(x))
tf_val = self.evaluate(out)
self.assertEqual(out.dtype, dtypes_lib.bool)
self.assertAllEqual(np_ans, tf_val)
self.assertShapeEqual(np_ans, out)
def testScalar(self):
data = [np.array([True]), np.array([False])]
for use_gpu in [True, False]:
for x in data:
with self.subTest(use_gpu=use_gpu, x=x):
self._not(x, use_gpu)
for x in data:
for y in data:
with self.subTest(use_gpu=use_gpu, x=x, y=y):
self._compareBinary(x, y, np.logical_and, math_ops.logical_and,
use_gpu)
self._compareBinary(x, y, np.logical_or, math_ops.logical_or,
use_gpu)
self._compareBinary(x, y, np.logical_xor, math_ops.logical_xor,
use_gpu)
def testTensor(self):
x = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2)
y = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2)
for use_gpu in [True, False]:
with self.subTest(use_gpu=use_gpu):
self._not(x, use_gpu)
self._compareBinary(x, y, np.logical_and, math_ops.logical_and, use_gpu)
self._compareBinary(x, y, np.logical_or, math_ops.logical_or, use_gpu)
self._compareBinary(x, y, np.logical_xor, math_ops.logical_xor, use_gpu)
def testBCast(self):
shapes = [
([1, 3, 2], [1]),
([1, 3, 2], [2]),
([1, 3, 2], [3, 2]),
([1, 3, 2], [3, 1]),
([1, 3, 2], [1, 3, 2]),
([1, 3, 2], [2, 3, 1]),
([1, 3, 2], [2, 1, 1]),
([1, 3, 2], [1, 3, 1]),
([2, 1, 5], [2, 3, 1]),
([2, 0, 5], [2, 0, 1]),
([2, 3, 0], [2, 3, 1]),
]
for (xs, ys) in shapes:
x = np.random.randint(0, 2, np.prod(xs)).astype(np.bool).reshape(xs)
y = np.random.randint(0, 2, np.prod(ys)).astype(np.bool).reshape(ys)
for use_gpu in [True, False]:
with self.subTest(xs=xs, ys=ys, use_gpu=use_gpu):
self._compareBinary(x, y, np.logical_and, math_ops.logical_and,
use_gpu)
self._compareBinary(x, y, np.logical_or, math_ops.logical_or, use_gpu)
self._compareBinary(x, y, np.logical_xor, math_ops.logical_xor,
use_gpu)
@test_util.run_deprecated_v1
def testShapeMismatch(self):
x = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2)
y = np.random.randint(0, 2, 6).astype(np.bool).reshape(3, 2, 1)
for f in [math_ops.logical_and, math_ops.logical_or, math_ops.logical_xor]:
with self.subTest(f=f):
with self.assertRaisesWithPredicateMatch(
ValueError, lambda e: "Dimensions must" in str(e)):
f(x, y)
@test_util.run_deprecated_v1
def testUsingAsPythonValueFails(self):
# Ensure that we raise an error when the user attempts to treat a
# `Tensor` as a Python `bool`.
b = constant_op.constant(False)
with self.assertRaises(TypeError):
if b:
pass
x = constant_op.constant(3)
y = constant_op.constant(4)
with self.assertRaises(TypeError):
if x > y:
pass
z = constant_op.constant(7)
# The chained comparison should fail because Python computes `x <
# y` and short-circuits the comparison with `z` if it is `False`.
with self.assertRaises(TypeError):
_ = x < y < z
class SelectOpTest(test.TestCase):
def _compare(self, fn, c, x, y, use_gpu):
np_ans = np.where(c, x, y)
with test_util.device(use_gpu=use_gpu):
out = fn(c, x, y)
tf_ans = self.evaluate(out)
self.assertAllEqual(np_ans, tf_ans)
self.assertShapeEqual(np_ans, out)
def _compareGradientX(self,
fn,
c,
x,
y,
numeric_gradient_type=None,
x_init_value=None):
with self.cached_session():
inx = ops.convert_to_tensor(x)
iny = ops.convert_to_tensor(y)
out = fn(c, inx, iny)
s = list(np.shape(c))
if x_init_value is None:
x_init_value = x
if x.shape != y.shape:
x_init_value = np.broadcast_to(y, x.shape)
jacob_t, jacob_n = gradient_checker.compute_gradient(
inx, s, out, s, x_init_value=x_init_value)
if numeric_gradient_type is not None:
xf = x.astype(numeric_gradient_type)
yf = y.astype(numeric_gradient_type)
inxf = ops.convert_to_tensor(xf)
inyf = ops.convert_to_tensor(yf)
outf = fn(c, inxf, inyf)
_, jacob_n = gradient_checker.compute_gradient(
inxf, s, outf, s, x_init_value=xf)
jacob_n = jacob_n.astype(x.dtype)
if x.dtype == np.float16:
self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3)
elif x.dtype == np.float32:
self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3)
elif x.dtype == np.float64:
self.assertAllClose(jacob_t, jacob_n, rtol=1e-5, atol=1e-5)
def _compareGradientY(self, fn, c, x, y, numeric_gradient_type=None):
with self.cached_session():
inx = ops.convert_to_tensor(x)
iny = ops.convert_to_tensor(y)
out = fn(c, inx, iny)
s = list(np.shape(c))
jacob_t, jacob_n = gradient_checker.compute_gradient(
iny, s, out, s, x_init_value=x, delta=1.0)
if numeric_gradient_type is not None:
xf = x.astype(numeric_gradient_type)
yf = y.astype(numeric_gradient_type)
inxf = ops.convert_to_tensor(xf)
inyf = ops.convert_to_tensor(yf)
outf = fn(c, inxf, inyf)
_, jacob_n = gradient_checker.compute_gradient(
inyf, s, outf, s, x_init_value=yf)
jacob_n = jacob_n.astype(x.dtype)
if x.dtype == np.float16:
self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3)
elif x.dtype == np.float32:
self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3)
elif x.dtype == np.float64:
self.assertAllClose(jacob_t, jacob_n, rtol=1e-5, atol=1e-5)
def _testScalar(self, fn):
c = True
x = np.random.rand(1, 3, 2) * 100
y = np.random.rand(1, 3, 2) * 100
for t in [
np.float16, np.float32, np.float64, np.int32, np.int64, np.complex64,
np.complex128
]:
with self.subTest(t=t):
xt = x.astype(t)
yt = y.astype(t)
self._compare(fn, c, xt, yt, use_gpu=False)
if t in [np.float16, np.float32, np.float64]:
self._compare(fn, c, xt, yt, use_gpu=True)
def testScalar(self):
self._testScalar(array_ops.where)
self._testScalar(array_ops.where_v2)
def _testScalarBroadcast(self, fn, c, x, y):
for t in [
np.float16, np.float32, np.float64, np.int32, np.int64, np.complex64,
np.complex128
]:
with self.subTest(t=t):
xt = x.astype(t)
yt = y.astype(t)
self._compare(fn, c, xt, yt, use_gpu=False)
if t in [np.float16, np.float32, np.float64]:
self._compare(fn, c, xt, yt, use_gpu=True)
def testScalarBroadcast(self):
c = True
# where_v2 only
x = np.random.rand(1, 3, 2) * 100
y = np.random.rand(1, 1, 1) * 100
self._testScalarBroadcast(array_ops.where_v2, c, x, y)
self._testScalarBroadcast(array_ops.where_v2, c, y, x)
x = np.random.rand(1, 3, 2) * 100
y = np.random.rand(1, 3, 1) * 100
self._testScalarBroadcast(array_ops.where_v2, c, x, y)
self._testScalarBroadcast(array_ops.where_v2, c, y, x)
x = np.random.rand(1, 3, 2) * 100
y = np.random.rand(1, 1, 2) * 100
self._testScalarBroadcast(array_ops.where_v2, c, x, y)
self._testScalarBroadcast(array_ops.where_v2, c, y, x)
x = np.random.rand(1, 3, 2) * 100
y = np.random.rand(1, 1) * 100
self._testScalarBroadcast(array_ops.where_v2, c, x, y)
self._testScalarBroadcast(array_ops.where_v2, c, y, x)
x = np.random.rand(1, 3, 2) * 100
y = np.random.rand(1) * 100
self._testScalarBroadcast(array_ops.where_v2, c, x, y)
self._testScalarBroadcast(array_ops.where_v2, c, y, x)
x = np.random.rand(1, 3, 2) * 100
y = np.random.rand(1, 2) * 100
self._testScalarBroadcast(array_ops.where_v2, c, x, y)
self._testScalarBroadcast(array_ops.where_v2, c, y, x)
x = np.random.rand(1, 3, 2) * 100
y = np.random.rand(3, 2) * 100
self._testScalarBroadcast(array_ops.where_v2, c, x, y)
self._testScalarBroadcast(array_ops.where_v2, c, y, x)
def _testBasic(self, fn):
c = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2)
x = np.random.rand(1, 3, 2) * 100
y = np.random.rand(1, 3, 2) * 100
for t in [
np.float16, np.float32, np.float64, np.int32, np.int64, np.complex64,
np.complex128
]:
with self.subTest(t=t):
xt = x.astype(t)
yt = y.astype(t)
self._compare(fn, c, xt, yt, use_gpu=False)
if t in [np.float16, np.float32, np.float64]:
self._compare(fn, c, xt, yt, use_gpu=True)
def testBasic(self):
self._testBasic(array_ops.where)
self._testBasic(array_ops.where_v2)
def _testBasicBroadcast(self, fn, c, x, y):
for t in [
np.float16, np.float32, np.float64, np.int32, np.int64, np.complex64,
np.complex128
]:
with self.subTest(t=t):
xt = x.astype(t)
yt = y.astype(t)
self._compare(fn, c, xt, yt, use_gpu=False)
if t in [np.float16, np.float32, np.float64]:
self._compare(fn, c, xt, yt, use_gpu=True)
def testBasicBroadcast(self):
c0 = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2)
c1 = np.random.randint(0, 2, 2).astype(np.bool).reshape(1, 1, 2)
c2 = np.random.randint(0, 2, 3).astype(np.bool).reshape(1, 3, 1)
c3 = np.random.randint(0, 2, 1).astype(np.bool).reshape(1, 1, 1)
for c in [c0, c1, c2, c3]:
# where_v2 only
with self.subTest(c=c):
x = np.random.rand(1, 3, 2) * 100
y = np.random.rand(1, 1, 1) * 100
self._testBasicBroadcast(array_ops.where_v2, c, x, y)
self._testBasicBroadcast(array_ops.where_v2, c, y, x)
x = np.random.rand(1, 3, 2) * 100
y = np.random.rand(1, 3, 1) * 100
self._testBasicBroadcast(array_ops.where_v2, c, x, y)
self._testBasicBroadcast(array_ops.where_v2, c, y, x)
x = np.random.rand(1, 3, 2) * 100
y = np.random.rand(1, 1, 2) * 100
self._testBasicBroadcast(array_ops.where_v2, c, x, y)
self._testBasicBroadcast(array_ops.where_v2, c, y, x)
x = np.random.rand(1, 3, 2) * 100
y = np.random.rand(1, 1) * 100
self._testBasicBroadcast(array_ops.where_v2, c, x, y)
self._testBasicBroadcast(array_ops.where_v2, c, y, x)
x = np.random.rand(1, 3, 2) * 100
y = np.random.rand(1) * 100
self._testBasicBroadcast(array_ops.where_v2, c, x, y)
self._testBasicBroadcast(array_ops.where_v2, c, y, x)
x = np.random.rand(1, 3, 2) * 100
y = np.random.rand(1, 2) * 100
self._testBasicBroadcast(array_ops.where_v2, c, x, y)
self._testBasicBroadcast(array_ops.where_v2, c, y, x)
x = np.random.rand(1, 3, 2) * 100
y = np.random.rand(3, 2) * 100
self._testBasicBroadcast(array_ops.where_v2, c, x, y)
self._testBasicBroadcast(array_ops.where_v2, c, y, x)
def _testGradients(self, fn):
c = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2)
x = np.random.rand(1, 3, 2) * 100
y = np.random.rand(1, 3, 2) * 100
for t in [np.float16, np.float32, np.float64]:
with self.subTest(t=t):
xt = x.astype(t)
yt = y.astype(t)
if t == np.float16:
# Compare fp16 theoretical gradients to fp32 numerical gradients,
# since fp16 numerical gradients are too imprecise unless great
# care is taken with choosing the inputs and the delta. This is
# a weaker check (in particular, it does not test the op itself,
# only its gradient), but it's much better than nothing.
self._compareGradientX(fn, c, xt, yt, np.float)
self._compareGradientY(fn, c, xt, yt, np.float)
else:
self._compareGradientX(fn, c, xt, yt)
self._compareGradientY(fn, c, xt, yt)
@test_util.run_deprecated_v1
def testGradients(self):
self._testGradients(array_ops.where)
self._testGradients(array_ops.where_v2)
@test_util.run_deprecated_v1
def testGradientsBroadcast(self):
c = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2)
for t in [np.float32, np.float64]:
# where_v2 only
with self.subTest(t=t):
x = np.random.rand(1, 3, 2) * 100
y = np.random.rand(1, 1, 1) * 100
self._compareGradientX(array_ops.where_v2, c, x.astype(t), y.astype(t))
x = np.random.rand(1, 3, 2) * 100
y = np.random.rand(1, 3, 1) * 100
self._compareGradientX(array_ops.where_v2, c, x.astype(t), y.astype(t))
x = np.random.rand(1, 3, 2) * 100
y = np.random.rand(1, 1, 2) * 100
self._compareGradientX(array_ops.where_v2, c, x.astype(t), y.astype(t))
x = np.random.rand(1, 3, 2) * 100
y = np.random.rand(1, 1) * 100
self._compareGradientX(array_ops.where_v2, c, x.astype(t), y.astype(t))
x = np.random.rand(1, 3, 2) * 100
y = np.random.rand(1) * 100
self._compareGradientX(array_ops.where_v2, c, x.astype(t), y.astype(t))
x = np.random.rand(1, 3, 2) * 100
y = np.random.rand(1, 2) * 100
self._compareGradientX(array_ops.where_v2, c, x.astype(t), y.astype(t))
x = np.random.rand(1, 3, 2) * 100
y = np.random.rand(3, 2) * 100
self._compareGradientX(array_ops.where_v2, c, x.astype(t), y.astype(t))
def _testShapeMismatch(self, fn):
c = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2)
x = np.random.rand(1, 3, 2) * 100
y = np.random.rand(2, 5, 3) * 100
for t in [
np.float16, np.float32, np.float64, np.int32, np.int64, np.complex64,
np.complex128
]:
with self.subTest(t=t):
xt = x.astype(t)
yt = y.astype(t)
with self.assertRaises(ValueError):
fn(c, xt, yt)
@test_util.run_deprecated_v1
def testShapeMismatch(self):
self._testShapeMismatch(array_ops.where)
self._testShapeMismatch(array_ops.where_v2)
def _testEmptyTensor(self, fn):
c = np.random.randint(0, 3, 0).astype(np.bool).reshape(1, 3, 0)
x = np.random.rand(1, 3, 0) * 100
y = np.random.rand(1, 3, 0) * 100
z_expected = np.zeros((1, 3, 0), dtype=np.float32)
with self.cached_session():
xt = x.astype(np.float32)
yt = y.astype(np.float32)
z = fn(c, xt, yt).eval()
self.assertAllEqual(z_expected, z)
@test_util.run_deprecated_v1
def testEmptyTensor(self):
self._testEmptyTensor(array_ops.where)
self._testEmptyTensor(array_ops.where_v2)
def _testNan(self, fn):
with self.cached_session():
for c in False, True:
for a in 7.0, np.nan:
for b in 5.0, np.nan:
with self.subTest(c=c, a=a, b=b):
x = fn(c, a, b).eval()
y = a if c else b
self.assertEqual(np.isnan(x), np.isnan(y))
@test_util.run_deprecated_v1
def testNan(self):
"""Verify that nans don't propagate where they shouldn't."""
self._testNan(array_ops.where)
self._testNan(array_ops.where_v2)
class BatchSelectOpTest(test.TestCase):
"""Test broadcasting of Select when 'c' is a vec and 't' &'e' are rank2+."""
def _compare(self, c, x, y, use_gpu):
np_ans = np.dstack(
[x_i if c_i else y_i for c_i, x_i, y_i in zip(c, x, y)]).transpose(
[2, 0, 1])
with test_util.device(use_gpu=use_gpu):
out = array_ops.where(c, x, y)
tf_ans = self.evaluate(out)
self.assertAllEqual(np_ans, tf_ans)
self.assertShapeEqual(np_ans, out)
def _compareGradientX(self, c, x, y, numeric_gradient_type=None):
with self.cached_session():
inx = ops.convert_to_tensor(x)
iny = ops.convert_to_tensor(y)
out = array_ops.where(c, inx, iny)
s = list(np.shape(x))
jacob_t, jacob_n = gradient_checker.compute_gradient(
inx, s, out, s, x_init_value=x)
if numeric_gradient_type is not None:
xf = x.astype(numeric_gradient_type)
yf = y.astype(numeric_gradient_type)
inxf = ops.convert_to_tensor(xf)
inyf = ops.convert_to_tensor(yf)
outf = array_ops.where(c, inxf, inyf)
_, jacob_n = gradient_checker.compute_gradient(
inxf, s, outf, s, x_init_value=xf)
jacob_n = jacob_n.astype(x.dtype)
if x.dtype == np.float16:
self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3)
elif x.dtype == np.float32:
self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3)
elif x.dtype == np.float64:
self.assertAllClose(jacob_t, jacob_n, rtol=1e-5, atol=1e-5)
def _compareGradientY(self, c, x, y, numeric_gradient_type=None):
with self.cached_session():
inx = ops.convert_to_tensor(x)
iny = ops.convert_to_tensor(y)
out = array_ops.where(c, inx, iny)
s = list(np.shape(x))
jacob_t, jacob_n = gradient_checker.compute_gradient(
iny, s, out, s, x_init_value=y)
if numeric_gradient_type is not None:
xf = x.astype(numeric_gradient_type)
yf = y.astype(numeric_gradient_type)
inxf = ops.convert_to_tensor(xf)
inyf = ops.convert_to_tensor(yf)
outf = array_ops.where(c, inxf, inyf)
_, jacob_n = gradient_checker.compute_gradient(
inyf, s, outf, s, x_init_value=yf)
jacob_n = jacob_n.astype(x.dtype)
if x.dtype == np.float16:
self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3)
elif x.dtype == np.float32:
self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3)
elif x.dtype == np.float64:
self.assertAllClose(jacob_t, jacob_n, rtol=1e-5, atol=1e-5)
def testBasic(self):
c = np.random.randint(0, 2, 16).astype(np.bool)
x = np.random.rand(16, 2, 8) * 100
y = np.random.rand(16, 2, 8) * 100
for t in [
np.float16, np.float32, np.float64, np.int32, np.int64, np.complex64,
np.complex128
]:
with self.subTest(t=t):
xt = x.astype(t)
yt = y.astype(t)
self._compare(c, xt, yt, use_gpu=False)
if t in [np.float16, np.float32, np.float64]:
self._compare(c, xt, yt, use_gpu=True)
@test_util.run_deprecated_v1
def testGradients(self):
c = np.random.randint(0, 2, 16).astype(np.bool)
x = np.random.rand(16, 2, 8) * 100
y = np.random.rand(16, 2, 8) * 100
for t in [np.float16, np.float32, np.float64]:
with self.subTest(t=t):
xt = x.astype(t)
yt = y.astype(t)
if t == np.float16:
# Compare fp16 theoretical gradients to fp32 numerical gradients,
# since fp16 numerical gradients are too imprecise unless great
# care is taken with choosing the inputs and the delta. This is
# a weaker check (in particular, it does not test the op itself,
# only its gradient), but it's much better than nothing.
self._compareGradientX(c, xt, yt, np.float)
self._compareGradientY(c, xt, yt, np.float)
else:
self._compareGradientX(c, xt, yt)
self._compareGradientY(c, xt, yt)
@test_util.run_deprecated_v1
def testShapeMismatch(self):
c = np.random.randint(0, 2, 8).astype(np.bool)
x = np.random.rand(16, 3, 2) * 100
y = np.random.rand(16, 3, 2) * 100
for t in [
np.float16, np.float32, np.float64, np.int32, np.int64, np.complex64,
np.complex128
]:
with self.subTest(t=t):
xt = x.astype(t)
yt = y.astype(t)
with self.assertRaises(ValueError):
array_ops.where(c, xt, yt)
class MinMaxOpTest(test.TestCase):
def _compare(self, x, y, use_gpu):
np_min, np_max = np.minimum(x, y), np.maximum(x, y)
with test_util.device(use_gpu=use_gpu):
inx = ops.convert_to_tensor(x)
iny = ops.convert_to_tensor(y)
omin, omax = math_ops.minimum(inx, iny), math_ops.maximum(inx, iny)
tf_min, tf_max = self.evaluate([omin, omax])
self.assertAllEqual(np_min, tf_min)
self.assertAllEqual(np_max, tf_max)
def testBasic(self):
x = np.random.rand(1, 3, 2) * 100.
y = np.random.rand(1, 3, 2) * 100.
for t in [np.float16, np.float32, np.float64, np.uint8, np.int16, np.int32,
np.int64]:
with self.subTest(t=t):
self._compare(x.astype(t), y.astype(t), use_gpu=False)
self._compare(x.astype(t), y.astype(t), use_gpu=True)
def testDifferentShapes(self):
x = np.random.rand(1, 3, 2) * 100.
y = np.random.rand(2) * 100. # should broadcast
for t in [np.float16, np.float32, np.float64, np.int32, np.int64]:
with self.subTest(t=t):
self._compare(x.astype(t), y.astype(t), use_gpu=False)
self._compare(x.astype(t), y.astype(t), use_gpu=True)
def testScalar(self):
x = np.random.rand(1, 3, 2) * 100.
y = np.random.rand(1).item() * 100. # should broadcast
# dropped np.float64, int64 because TF automatically converts to 32 bit
for t in [np.float32, np.int32]:
with self.subTest(t=t):
self._compare(x.astype(t), t(y), use_gpu=False)
self._compare(x.astype(t), t(y), use_gpu=True)
def _compareGradientX(self, func, x, y):
with self.cached_session():
inx = ops.convert_to_tensor(x)
iny = ops.convert_to_tensor(y)
out = func(inx, iny)
s = list(np.shape(x))
jacob_t, jacob_n = gradient_checker.compute_gradient(
inx, s, out, s, x_init_value=x)
if x.dtype == np.float16:
self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3)
elif x.dtype == np.float32:
self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3)
elif x.dtype == np.float64:
self.assertAllClose(jacob_t, jacob_n, rtol=1e-5, atol=1e-5)
def _compareGradientY(self, func, x, y):
with self.cached_session():
inx = ops.convert_to_tensor(x)
iny = ops.convert_to_tensor(y)
out = func(inx, iny)
s = list(np.shape(x))
jacob_t, jacob_n = gradient_checker.compute_gradient(
iny, s, out, s, x_init_value=y)
if x.dtype == np.float16:
self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3)
elif x.dtype == np.float32:
self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3)
elif x.dtype == np.float64:
self.assertAllClose(jacob_t, jacob_n, rtol=1e-5, atol=1e-5)
@test_util.run_deprecated_v1
def testGradients(self):
x = np.random.rand(1, 3, 2) * 100.
# ensure x != y
y = x + (np.random.randint(2, size=x.shape) - .5) * 2 # -1 or +1
self._compareGradientX(math_ops.maximum, x, y)
self._compareGradientY(math_ops.maximum, x, y)
self._compareGradientX(math_ops.minimum, x, y)
self._compareGradientY(math_ops.minimum, x, y)
class MathOpsOverloadTest(test.TestCase):
def _computeTensorAndLiteral(self, x, y, dtype, func):
with test_util.force_cpu():
inx = ops.convert_to_tensor(x, dtype=dtype)
z = func(inx, y) # Should use __add__, __sub__, etc.
return self.evaluate(z)
def _computeLiteralAndTensor(self, x, y, dtype, func):
with test_util.force_cpu():
iny = ops.convert_to_tensor(y, dtype=dtype)
z = func(x, iny) # Should use __radd__, __rsub__, etc.
return self.evaluate(z)
def _compareBinary(self, x, y, dtype, np_func, tf_func):
np_ans = np_func(x, y).astype(dtype.as_numpy_dtype)
self.assertAllClose(np_ans,
self._computeTensorAndLiteral(x, y, dtype, tf_func))
self.assertAllClose(np_ans,
self._computeLiteralAndTensor(x, y, dtype, tf_func))
def _compareUnary(self, x, dtype, np_func, tf_func):
np_ans = np_func(x).astype(dtype.as_numpy_dtype)
with test_util.force_cpu():
self.assertAllClose(
np_ans, self.evaluate(tf_func(ops.convert_to_tensor(x, dtype=dtype))))
def testOverload(self):
dtypes = [
dtypes_lib.float16,
dtypes_lib.float32,
dtypes_lib.float64,
dtypes_lib.int32,
dtypes_lib.int64,
dtypes_lib.complex64,
dtypes_lib.complex128,
]
funcs = [
(np.add, _ADD),
(np.subtract, _SUB),
(np.multiply, _MUL),
(np.power, _POW),
(np.true_divide, _TRUEDIV),
(np.floor_divide, _FLOORDIV),
]
for dtype in dtypes:
for np_func, tf_func in funcs:
with self.subTest(dtype=dtype, np_func=np_func, tf_func=tf_func):
if dtype in (dtypes_lib.complex64,
dtypes_lib.complex128) and tf_func == _FLOORDIV:
continue # floordiv makes no sense for complex
self._compareBinary(10, 5, dtype, np_func, tf_func)
# Mod only works for int32 and int64.
for dtype in [dtypes_lib.int32, dtypes_lib.int64]:
with self.subTest(dtype=dtype):
self._compareBinary(10, 3, dtype, np.mod, _MOD)
def testOverloadComparisons(self):
dtypes = [
dtypes_lib.float16,
dtypes_lib.float32,
dtypes_lib.float64,
dtypes_lib.int32,
dtypes_lib.int64,
]
funcs = [
(np.less, _LT),
(np.less_equal, _LE),
(np.greater, _GT),
(np.greater_equal, _GE),
]
for dtype in dtypes:
for np_func, tf_func in funcs:
with self.subTest(dtype=dtype, np_func=np_func, tf_func=tf_func):
self._compareBinary(10, 5, dtype, np_func, tf_func)
logical_funcs = [(np.logical_and, _AND), (np.logical_or, _OR),
(np.logical_xor, _XOR), (np.equal, math_ops.equal),
(np.not_equal, math_ops.not_equal)]
for np_func, tf_func in logical_funcs:
with self.subTest(np_func=np_func, tf_func=tf_func):
self._compareBinary(True, False, dtypes_lib.bool, np_func, tf_func)
self._compareBinary(True, True, dtypes_lib.bool, np_func, tf_func)
self._compareBinary(False, False, dtypes_lib.bool, np_func, tf_func)
self._compareBinary(False, True, dtypes_lib.bool, np_func, tf_func)
self._compareBinary([True, True, False, False],
[True, False, True, False], dtypes_lib.bool,
np_func, tf_func)
self._compareUnary(True, dtypes_lib.bool, np.logical_not, _INV)
self._compareUnary(False, dtypes_lib.bool, np.logical_not, _INV)
self._compareUnary([True, False], dtypes_lib.bool, np.logical_not, _INV)
class IsFiniteInfNanTest(test.TestCase):
def _compare(self, x, use_gpu):
np_finite, np_inf, np_nan = np.isfinite(x), np.isinf(x), np.isnan(x)
with test_util.device(use_gpu=use_gpu):
inx = ops.convert_to_tensor(x)
ofinite, oinf, onan = math_ops.is_finite(inx), math_ops.is_inf(
inx), math_ops.is_nan(inx)
tf_finite, tf_inf, tf_nan = self.evaluate([ofinite, oinf, onan])
self.assertAllEqual(np_inf, tf_inf)
self.assertAllEqual(np_nan, tf_nan)
self.assertAllEqual(np_finite, tf_finite)
self.assertShapeEqual(np_inf, oinf)
self.assertShapeEqual(np_nan, onan)
self.assertShapeEqual(np_finite, ofinite)
def _testDtype(self, dtype):
fi = np.finfo(dtype)
data = np.array([
0, -1, 1, fi.resolution, -fi.resolution, fi.min, fi.max, -np.inf,
np.inf, np.nan
]).astype(dtype)
self._compare(data, use_gpu=False)
self._compare(data, use_gpu=True)
def testHalf(self):
self._testDtype(np.float16)
def testFloat(self):
self._testDtype(np.float32)
def testDouble(self):
self._testDtype(np.float64)
def testSqrt(self):
for dtype in [np.float16, np.float32, np.float64]:
fi = np.finfo(dtype)
for size in [1, 3, 4, 7, 8, 63, 64, 65]:
# For float32 Eigen uses Carmack's fast vectorized sqrt algorithm.
# It is not accurate for very large arguments, so we test for
# fi.max/100 instead of fi.max here.
for value in [fi.min, -2, -1, 0, fi.tiny, 1, 2, 1000, fi.max / 100]:
with self.subTest(dtype=dtype, size=size, value=value):
x = np.full((size,), value, dtype=dtype)
np_y = np.sqrt(x)
np_nan = np.isnan(np_y)
with test_util.use_gpu():
tf_y = math_ops.sqrt(x)
tf_nan = math_ops.is_nan(tf_y)
if value < 0:
self.assertAllEqual(np_nan, self.evaluate(tf_nan))
else:
self.assertAllCloseAccordingToType(np_y, self.evaluate(tf_y))
class RoundingTest(test.TestCase):
def _compare_values(self, x, y=None):
y = np.rint(x) if y is None else np.asarray(y)
tf_rint = math_ops.rint(x)
np_rint = self.evaluate(tf_rint)
self.assertAllEqual(y, np_rint)
self.assertShapeEqual(y, tf_rint)
def _compare(self, x):
np_floor, np_ceil = np.floor(x), np.ceil(x)
inx = ops.convert_to_tensor(x)
ofloor, oceil = math_ops.floor(inx), math_ops.ceil(inx)
tf_floor, tf_ceil = self.evaluate([ofloor, oceil])
self.assertAllEqual(np_floor, tf_floor)
self.assertAllEqual(np_ceil, tf_ceil)
self.assertShapeEqual(np_floor, ofloor)
self.assertShapeEqual(np_ceil, oceil)
def _testDtype(self, dtype):
data = (np.arange(-3, 3) / 4.).reshape(1, 3, 2).astype(dtype)
self._compare(data)
# TODO: rint op is not supported for float16
if dtype is np.float16:
return
self._compare_values(data)
x = [0.5, 0.5000001]
y = [0.0, 1.0]
self._compare_values(x, y=y)
# numpy example
x = [-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]
y = [-2., -2., -0., 0., 2., 2., 2.]
self._compare_values(x, y=y)
def testTypes(self):
self.skipTest("b/131162241")
for dtype in [np.float16, np.float32, np.float64]:
with self.subTest(dtype=dtype):
self._testDtype(dtype)
class ComplexMakeRealImagTest(test.TestCase):
def _compareMake(self, real, imag, use_gpu):
np_ans = real + (1j) * imag
with test_util.device(use_gpu=use_gpu):
real = ops.convert_to_tensor(real)
imag = ops.convert_to_tensor(imag)
tf_ans = math_ops.complex(real, imag)
out = self.evaluate(tf_ans)
self.assertAllEqual(np_ans, out)
self.assertShapeEqual(np_ans, tf_ans)
def testMake(self):
real = (np.arange(-3, 3) / 4.).reshape([1, 3, 2]).astype(np.float32)
imag = (np.arange(-3, 3) / 5.).reshape([1, 3, 2]).astype(np.float32)
for use_gpu in [False, True]:
with self.subTest(use_gpu=use_gpu):
self._compareMake(real, imag, use_gpu)
self._compareMake(real, 12.0, use_gpu)
self._compareMake(23.0, imag, use_gpu)
def testRealImagNumericType(self):
for use_gpu in [True, False]:
for value in [1., 1j, 1. + 1j]:
with self.subTest(use_gpu=use_gpu, value=value):
np_real, np_imag = np.real(value), np.imag(value)
with test_util.device(use_gpu=use_gpu):
tf_real = math_ops.real(value)
tf_imag = math_ops.imag(value)
self.assertAllEqual(np_real, self.evaluate(tf_real))
self.assertAllEqual(np_imag, self.evaluate(tf_imag))
def _compareRealImag(self, cplx, use_gpu):
np_real, np_imag = np.real(cplx), np.imag(cplx)
np_zeros = np_real * 0
with test_util.device(use_gpu=use_gpu):
inx = ops.convert_to_tensor(cplx)
tf_real = math_ops.real(inx)
tf_imag = math_ops.imag(inx)
tf_real_real = math_ops.real(tf_real)
tf_imag_real = math_ops.imag(tf_real)
self.assertAllEqual(np_real, self.evaluate(tf_real))
self.assertAllEqual(np_imag, self.evaluate(tf_imag))
self.assertAllEqual(np_real, self.evaluate(tf_real_real))
self.assertAllEqual(np_zeros, self.evaluate(tf_imag_real))
def testRealImag64(self):
real = (np.arange(-3, 3) / 4.).reshape([1, 3, 2]).astype(np.float32)
imag = (np.arange(-3, 3) / 5.).reshape([1, 3, 2]).astype(np.float32)
cplx = real + 1j * imag
self._compareRealImag(cplx, use_gpu=False)
self._compareRealImag(cplx, use_gpu=True)
def testRealImag128(self):
real = (np.arange(-3, 3) / 4.).reshape([1, 3, 2]).astype(np.float64)
imag = (np.arange(-3, 3) / 5.).reshape([1, 3, 2]).astype(np.float64)
cplx = real + 1j * imag
self._compareRealImag(cplx, use_gpu=False)
self._compareRealImag(cplx, use_gpu=True)
def _compareAngle(self, cplx, use_gpu):
np_angle = np.angle(cplx)
with test_util.device(use_gpu=use_gpu):
inx = ops.convert_to_tensor(cplx)
tf_angle = math_ops.angle(inx)
tf_angle_val = self.evaluate(tf_angle)
self.assertAllClose(np_angle, tf_angle_val)
self.assertShapeEqual(np_angle, tf_angle)
def testAngle(self):
mag = np.random.rand(10).astype(np.float32)
angle = (2 * np.pi * np.arange(10) / 10.).astype(np.float32)
cplx = mag * np.exp(1j * angle)
cplx = np.append(cplx, [1., 1.j, -1., -1.j])
self._compareAngle(cplx, use_gpu=False)
self._compareAngle(cplx, use_gpu=True)
real = (np.arange(-2, 2) / 2.).astype(np.float64)
self._compareAngle(real, use_gpu=False)
self._compareAngle(real, use_gpu=True)
def testAngle64(self):
mag = np.random.rand(10).astype(np.float64)
angle = (2 * np.pi * np.arange(10) / 100.).astype(np.float64)
cplx = mag * np.exp(1j * angle)
cplx = np.append(cplx, [1., 1.j, -1., -1.j])
self._compareAngle(cplx, use_gpu=False)
self._compareAngle(cplx, use_gpu=True)
real = (np.arange(-2, 2) / 2.).astype(np.float64)
self._compareAngle(real, use_gpu=False)
self._compareAngle(real, use_gpu=True)
@test_util.run_deprecated_v1
def testRealReal(self):
for dtype in (dtypes_lib.int32, dtypes_lib.int64, dtypes_lib.float32,
dtypes_lib.float64):
with self.subTest(dtype=dtype):
x = array_ops.placeholder(dtype)
y = math_ops.real(x)
self.assertEqual(x, y)
def _compareConj(self, cplx, use_gpu):
np_ans = np.conj(cplx)
with test_util.device(use_gpu=use_gpu):
inx = ops.convert_to_tensor(cplx)
tf_conj = math_ops.conj(inx)
tf_ans = self.evaluate(tf_conj)
self.assertAllEqual(np_ans, tf_ans)
self.assertShapeEqual(np_ans, tf_conj)
def testConj64(self):
real = (np.arange(-3, 3) / 4.).reshape([1, 3, 2]).astype(np.float32)
imag = (np.arange(-3, 3) / 5.).reshape([1, 3, 2]).astype(np.float32)
cplx = real + 1j * imag
self._compareConj(cplx, use_gpu=False)
self._compareConj(cplx, use_gpu=True)
def testConj128(self):
real = (np.arange(-3, 3) / 4.).reshape([1, 3, 2]).astype(np.float64)
imag = (np.arange(-3, 3) / 5.).reshape([1, 3, 2]).astype(np.float64)
cplx = real + 1j * imag
self._compareConj(cplx, use_gpu=False)
self._compareConj(cplx, use_gpu=True)
@test_util.run_deprecated_v1
def testConjReal(self):
for dtype in (dtypes_lib.int32, dtypes_lib.int64, dtypes_lib.float16,
dtypes_lib.float32, dtypes_lib.float64):
with self.subTest(dtype=dtype):
x = array_ops.placeholder(dtype)
y = math_ops.conj(x)
self.assertEqual(x, y)
@test_util.run_deprecated_v1
def testConjString(self):
x = array_ops.placeholder(dtypes_lib.string)
with self.assertRaisesRegexp(TypeError,
r"Expected numeric or variant tensor"):
math_ops.conj(x)
def _compareGradient(self, x):
# x[:, 0] is real, x[:, 1] is imag. We combine real and imag into
# complex numbers. Then, we extract real and imag parts and
# computes the squared sum. This is obviously the same as sum(real
# * real) + sum(imag * imag). We just want to make sure the
# gradient function is checked.
with self.cached_session():
inx = ops.convert_to_tensor(x)
real, imag = array_ops.split(value=inx, num_or_size_splits=2, axis=1)
real, imag = array_ops.reshape(real, [-1]), array_ops.reshape(imag, [-1])
cplx = math_ops.complex(real, imag)
cplx = math_ops.conj(cplx)
loss = math_ops.reduce_sum(math_ops.square(
math_ops.real(cplx))) + math_ops.reduce_sum(
math_ops.square(math_ops.imag(cplx)))
epsilon = 1e-3
jacob_t, jacob_n = gradient_checker.compute_gradient(
inx, list(x.shape), loss, [1], x_init_value=x, delta=epsilon)
self.assertAllClose(jacob_t, jacob_n, rtol=epsilon, atol=epsilon)
def _compareBroadcastGradient(self, x):
x_ = ops.convert_to_tensor(x)
epsilon = 1e-3
with self.cached_session():
for args in [(x_, 0.), (0., x_)]:
with self.subTest(args=args):
z = math_ops.reduce_sum(math_ops.abs(math_ops.complex(*args)))
jacob_t, jacob_n = gradient_checker.compute_gradient(
x_, list(x.shape), z, [1], x_init_value=x, delta=epsilon)
self.assertAllClose(jacob_t, jacob_n, rtol=epsilon, atol=epsilon)
@test_util.run_deprecated_v1
def testGradient(self):
# complex64
data = np.arange(1, 2, 0.10).reshape([5, 2]).astype(np.float32)
self._compareGradient(data)
self._compareBroadcastGradient(data)
# complex128
data = np.arange(1, 2, 0.10).reshape([5, 2]).astype(np.float64)
self._compareGradient(data)
def _compareMulGradient(self, data):
# data is a float matrix of shape [n, 4]. data[:, 0], data[:, 1],
# data[:, 2], data[:, 3] are real parts of x, imaginary parts of
# x, real parts of y and imaginary parts of y.
with self.cached_session():
inp = ops.convert_to_tensor(data)
xr, xi, yr, yi = array_ops.split(value=inp, num_or_size_splits=4, axis=1)
def vec(x): # Reshape to a vector
return array_ops.reshape(x, [-1])
xr, xi, yr, yi = vec(xr), vec(xi), vec(yr), vec(yi)
def cplx(r, i): # Combine to a complex vector
return math_ops.complex(r, i)
x, y = cplx(xr, xi), cplx(yr, yi)
# z is x times y in complex plane.
z = x * y
# Defines the loss function as the sum of all coefficients of z.
loss = math_ops.reduce_sum(math_ops.real(z) + math_ops.imag(z))
epsilon = 0.005
jacob_t, jacob_n = gradient_checker.compute_gradient(
inp, list(data.shape), loss, [1], x_init_value=data, delta=epsilon)
self.assertAllClose(jacob_t, jacob_n, rtol=epsilon, atol=epsilon)
@test_util.run_deprecated_v1
def testMulGradient(self):
data = np.arange(1, 2, 0.125).reshape([2, 4]).astype(np.float32)
self._compareMulGradient(data)
class PolyvalTest(test.TestCase):
def _runtest(self, dtype, degree):
x = np.random.rand(2, 2).astype(dtype)
coeffs = [np.random.rand(2, 2).astype(dtype) for _ in range(degree + 1)]
np_val = np.polyval(coeffs, x)
with self.cached_session():
tf_val = math_ops.polyval(coeffs, x)
self.assertAllClose(np_val, self.evaluate(tf_val))
def testSimple(self):
for dtype in [
np.int32, np.float32, np.float64, np.complex64, np.complex128
]:
for degree in range(5):
with self.subTest(dtype=dtype, degree=degree):
self._runtest(dtype, degree)
def testBroadcast(self):
dtype = np.float32
degree = 3
shapes = [(1,), (2, 1), (1, 2), (2, 2)]
for x_shape in shapes:
for coeff_shape in shapes:
with self.subTest(x_shape=x_shape, coeff_shape=coeff_shape):
x = np.random.rand(*x_shape).astype(dtype)
coeffs = [
np.random.rand(*coeff_shape).astype(dtype)
for _ in range(degree + 1)
]
np_val = np.polyval(coeffs, x)
with self.cached_session():
tf_val = math_ops.polyval(coeffs, x)
self.assertAllClose(np_val, self.evaluate(tf_val))
def testEmpty(self):
x = np.random.rand(2, 2).astype(np.float32)
coeffs = []
np_val = np.polyval(coeffs, x)
with self.cached_session():
tf_val = math_ops.polyval(coeffs, x)
self.assertAllClose(np_val, self.evaluate(tf_val))
def test_coeffs_raise(self):
x = np.random.rand(2, 2).astype(np.float32)
coeffs = {}
with self.assertRaisesRegexp(ValueError, "Argument coeffs must be list"):
math_ops.polyval(coeffs, x)
if __name__ == "__main__":
test.main()