This is part 2/N of adding outer batch dimension support to tf.nn.convXd and keras.layers.ConvXd. Also added support for batch_shape.ndims > 1 to nn_ops.Convolution and other internal libraries, so that we can use this in keras.layers.ConvXD. For now, using tf.nn.convolution with filter.shape == 3 or filter.shape == 5 (conv1d or conv3d) still raises an error deep in the ops, because i haven't yet added reshape wrappers for gen_nn_ops.conv{1d,3d} but those are gonna be easy to add once this is in. I wanted to make sure it works for conv2d first. No public signature changes. Rollback of rollback with fixes. PiperOrigin-RevId: 312735044 Change-Id: I4b4497a2925a965fa45f1812d7bd25d7a2c087ac
3255 lines
118 KiB
Python
3255 lines
118 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Functional tests for convolutional operations."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import time
|
|
|
|
import numpy as np
|
|
|
|
from six.moves import xrange # pylint: disable=redefined-builtin
|
|
from tensorflow.core.protobuf import config_pb2
|
|
from tensorflow.core.protobuf import rewriter_config_pb2
|
|
from tensorflow.python.client import session as session_lib
|
|
from tensorflow.python.eager import backprop
|
|
from tensorflow.python.eager import context
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import errors_impl
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.layers import convolutional
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import control_flow_ops
|
|
from tensorflow.python.ops import gradient_checker
|
|
from tensorflow.python.ops import gradients_impl
|
|
from tensorflow.python.ops import nn_impl
|
|
from tensorflow.python.ops import nn_ops
|
|
from tensorflow.python.ops import random_ops
|
|
from tensorflow.python.ops import variables
|
|
import tensorflow.python.ops.nn_grad # pylint: disable=unused-import
|
|
from tensorflow.python.platform import test
|
|
from tensorflow.python.platform import tf_logging
|
|
from tensorflow.python.util.compat import collections_abc
|
|
|
|
|
|
def GetShrunkInceptionShapes(shrink=10):
|
|
"""Iterator for smaller versions of convolution shapes in 2015 Inception.
|
|
|
|
Relative to inception, each depth value is `depth // shrink`.
|
|
|
|
Args:
|
|
shrink: Factor to shrink each depth value by relative to Inception.
|
|
|
|
Yields:
|
|
Tuple (input_size, filter_size, out_size, stride, padding), the convolution
|
|
parameters of Inception layers.
|
|
"""
|
|
input_sizes = [[4, 5, 5, 1248], [4, 8, 8, 384], [4, 8, 8, 384],
|
|
[4, 8, 8, 2048], [4, 8, 8, 448], [4, 8, 8, 2048],
|
|
[4, 8, 8, 2048], [4, 8, 8, 2048], [4, 8, 8, 1760],
|
|
[4, 8, 8, 1760], [4, 8, 8, 1760], [4, 8, 8, 1760],
|
|
[4, 17, 17, 192], [4, 17, 17, 192], [4, 17, 17, 1248],
|
|
[4, 17, 17, 128], [4, 17, 17, 1248], [4, 17, 17, 224],
|
|
[4, 17, 17, 192], [4, 17, 17, 192], [4, 17, 17, 1216],
|
|
[4, 17, 17, 1216], [4, 17, 17, 224], [4, 17, 17, 192],
|
|
[4, 17, 17, 192], [4, 17, 17, 1152], [4, 17, 17, 1152],
|
|
[4, 17, 17, 192], [4, 17, 17, 160], [4, 17, 17, 1152],
|
|
[4, 17, 17, 1024], [4, 17, 17, 128], [4, 17, 17, 1024],
|
|
[4, 17, 17, 128], [4, 17, 17, 1024], [4, 17, 17, 128],
|
|
[4, 17, 17, 768], [4, 17, 17, 128], [4, 17, 17, 128],
|
|
[4, 17, 17, 768], [4, 17, 17, 768], [4, 35, 35, 96],
|
|
[4, 35, 35, 288], [4, 35, 35, 64], [4, 35, 35, 288],
|
|
[4, 35, 35, 256], [4, 35, 35, 48], [4, 35, 35, 256],
|
|
[4, 35, 35, 96], [4, 35, 35, 192], [4, 35, 35, 192],
|
|
[4, 35, 35, 192], [4, 73, 73, 64], [4, 73, 73, 64],
|
|
[4, 147, 147, 24]]
|
|
filter_sizes = [[1, 1, 1248, 128], [1, 3, 384, 384], [3, 1, 384, 384],
|
|
[1, 1, 2048, 192], [3, 3, 448, 384], [1, 1, 2048, 320],
|
|
[1, 1, 2048, 448], [1, 1, 2048, 384], [1, 1, 1760, 384],
|
|
[1, 1, 1760, 192], [1, 1, 1760, 448], [1, 1, 1760, 320],
|
|
[3, 3, 192, 192], [3, 3, 192, 192], [1, 1, 1248, 192],
|
|
[3, 3, 128, 320], [1, 1, 1248, 128], [1, 3, 224, 224],
|
|
[3, 1, 192, 256], [1, 3, 192, 256], [1, 1, 1216, 192],
|
|
[1, 1, 1216, 96], [3, 1, 224, 224], [3, 3, 192, 224],
|
|
[1, 3, 192, 192], [1, 1, 1152, 192], [1, 1, 1152, 128],
|
|
[3, 1, 192, 192], [3, 3, 160, 192], [1, 1, 1152, 160],
|
|
[1, 1, 1024, 128], [1, 3, 128, 192], [1, 1, 1024, 160],
|
|
[3, 1, 128, 192], [1, 1, 1024, 256], [3, 1, 128, 128],
|
|
[1, 1, 768, 192], [1, 3, 128, 128], [3, 3, 128, 128],
|
|
[1, 1, 768, 128], [1, 1, 768, 320], [3, 3, 96, 96],
|
|
[3, 3, 288, 384], [3, 3, 64, 96], [1, 1, 288, 64],
|
|
[1, 1, 256, 64], [5, 5, 48, 64], [1, 1, 256, 48],
|
|
[3, 3, 96, 96], [1, 1, 192, 32], [1, 1, 192, 64],
|
|
[1, 1, 192, 48], [3, 3, 64, 192], [1, 1, 64, 64],
|
|
[1, 1, 24, 64]]
|
|
out_sizes = [[4, 5, 5, 128], [4, 8, 8, 384], [4, 8, 8, 384],
|
|
[4, 8, 8, 192], [4, 8, 8, 384], [4, 8, 8, 320],
|
|
[4, 8, 8, 448], [4, 8, 8, 384], [4, 8, 8, 384],
|
|
[4, 8, 8, 192], [4, 8, 8, 448], [4, 8, 8, 320],
|
|
[4, 8, 8, 192], [4, 17, 17, 192], [4, 17, 17, 192],
|
|
[4, 8, 8, 320], [4, 17, 17, 128], [4, 17, 17, 224],
|
|
[4, 17, 17, 256], [4, 17, 17, 256], [4, 17, 17, 192],
|
|
[4, 17, 17, 96], [4, 17, 17, 224], [4, 17, 17, 224],
|
|
[4, 17, 17, 192], [4, 17, 17, 192], [4, 17, 17, 128],
|
|
[4, 17, 17, 192], [4, 17, 17, 192], [4, 17, 17, 160],
|
|
[4, 17, 17, 128], [4, 17, 17, 192], [4, 17, 17, 160],
|
|
[4, 17, 17, 192], [4, 17, 17, 256], [4, 17, 17, 128],
|
|
[4, 17, 17, 192], [4, 17, 17, 128], [4, 17, 17, 128],
|
|
[4, 17, 17, 128], [4, 17, 17, 320], [4, 17, 17, 96],
|
|
[4, 17, 17, 384], [4, 35, 35, 96], [4, 35, 35, 64],
|
|
[4, 35, 35, 64], [4, 35, 35, 64], [4, 35, 35, 48],
|
|
[4, 35, 35, 96], [4, 35, 35, 32], [4, 35, 35, 64],
|
|
[4, 35, 35, 48], [4, 71, 71, 192], [4, 73, 73, 64],
|
|
[4, 147, 147, 64]]
|
|
strides = [
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1
|
|
]
|
|
# Shrink sizes to make the test faster
|
|
for i in input_sizes:
|
|
i[3] //= shrink
|
|
for f in filter_sizes:
|
|
f[2] //= shrink
|
|
f[3] //= shrink
|
|
for o in out_sizes:
|
|
o[3] //= shrink
|
|
# pylint: disable=invalid-name
|
|
VALID = "VALID"
|
|
SAME = "SAME"
|
|
# pylint: enable=invalid-name
|
|
paddings = [
|
|
SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME,
|
|
VALID, SAME, SAME, VALID, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME,
|
|
SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME,
|
|
SAME, SAME, SAME, SAME, SAME, VALID, VALID, SAME, SAME, SAME, SAME, SAME,
|
|
SAME, SAME, SAME, SAME, VALID, VALID, VALID
|
|
]
|
|
for i, f, o, s, p in zip(input_sizes, filter_sizes, out_sizes, strides,
|
|
paddings):
|
|
yield i, f, o, s, p
|
|
|
|
|
|
def GetTestConfigs():
|
|
"""Get all the valid tests configs to run.
|
|
|
|
Returns:
|
|
all the valid test configs as tuples of data_format and use_gpu.
|
|
"""
|
|
test_configs = [("NHWC", False), ("NHWC", True)]
|
|
if test.is_gpu_available(cuda_only=True):
|
|
# "NCHW" format is only supported on CUDA.
|
|
test_configs += [("NCHW", True)]
|
|
return test_configs
|
|
|
|
|
|
class Conv2DTest(test.TestCase):
|
|
|
|
def _DtypesToTest(self, use_gpu):
|
|
# double datatype is currently not supported for convolution ops
|
|
# on the ROCm platform
|
|
optional_float64 = [] if test.is_built_with_rocm() else [dtypes.float64]
|
|
if use_gpu and not test_util.GpuSupportsHalfMatMulAndConv():
|
|
return [dtypes.float32] + optional_float64
|
|
else:
|
|
# It is important that float32 comes before float16 here,
|
|
# as we will be using its gradients as reference for fp16 gradients.
|
|
return [dtypes.float32, dtypes.float16] + optional_float64
|
|
|
|
def _CreateNumpyTensor(self, shape):
|
|
total_size = 1
|
|
for s in shape:
|
|
total_size *= s
|
|
return np.arange(1, total_size + 1, dtype=np.float32).reshape(shape)
|
|
|
|
def _SetupValuesForDevice(self, tensor_in_sizes, filter_in_sizes, dilations,
|
|
strides, padding, data_format, dtype, use_gpu):
|
|
"""Verifies the output values of the convolution function.
|
|
|
|
Args:
|
|
tensor_in_sizes: Input tensor dimensions in
|
|
[batch, input_rows, input_cols, input_depth].
|
|
filter_in_sizes: Filter tensor dimensions in
|
|
[kernel_rows, kernel_cols, input_depth, output_depth].
|
|
dilations: Dilated rate: [col_dilation, row_dilation]
|
|
strides: Stride: [col_stride, row_stride]
|
|
padding: Padding type.
|
|
data_format: Format of the data tensors.
|
|
dtype: Data type for inputs and outputs.
|
|
use_gpu: True if the operations should be run on GPU
|
|
Returns:
|
|
Symbolic tensor value that can be used to execute the computation
|
|
"""
|
|
x1 = self._CreateNumpyTensor(tensor_in_sizes)
|
|
x2 = self._CreateNumpyTensor(filter_in_sizes)
|
|
|
|
with test_util.device(use_gpu):
|
|
t1 = constant_op.constant(x1, shape=tensor_in_sizes, dtype=dtype)
|
|
t2 = constant_op.constant(x2, shape=filter_in_sizes, dtype=dtype)
|
|
strides = [1] + strides + [1]
|
|
dilations = [1] + dilations + [1]
|
|
if isinstance(padding, (list, tuple)):
|
|
padding = [(0, 0)] + padding + [(0, 0)]
|
|
if data_format == "NCHW":
|
|
t1 = test_util.NHWCToNCHW(t1)
|
|
strides = test_util.NHWCToNCHW(strides)
|
|
dilations = test_util.NHWCToNCHW(dilations)
|
|
if isinstance(padding, (list, tuple)):
|
|
padding = test_util.NHWCToNCHW(padding)
|
|
conv = nn_ops.conv2d(
|
|
t1,
|
|
t2,
|
|
dilations=dilations,
|
|
strides=strides,
|
|
padding=padding,
|
|
data_format=data_format)
|
|
self.assertEqual(conv.dtype, dtype)
|
|
if data_format == "NCHW":
|
|
conv = test_util.NCHWToNHWC(conv)
|
|
|
|
return conv
|
|
|
|
def _CompareFwdValues(self, tensor_in_sizes, filter_in_sizes, conv_strides,
|
|
padding):
|
|
"""Verifies that CPU and GPU produce the same values.
|
|
|
|
Args:
|
|
tensor_in_sizes: Input tensor dimensions in
|
|
[batch, input_rows, input_cols, input_depth].
|
|
filter_in_sizes: Filter tensor dimensions in
|
|
[kernel_rows, kernel_cols, input_depth, output_depth].
|
|
conv_strides: [row_stride, col_stride] for the convolution;
|
|
padding: Padding type.
|
|
"""
|
|
x1 = np.random.rand(*tensor_in_sizes).astype(np.float32)
|
|
x2 = np.random.rand(*filter_in_sizes).astype(np.float32)
|
|
|
|
def _SetupVal(data_format, use_gpu):
|
|
with test_util.device(use_gpu):
|
|
t1 = constant_op.constant(x1, shape=tensor_in_sizes)
|
|
t2 = constant_op.constant(x2, shape=filter_in_sizes)
|
|
strides = [1] + conv_strides + [1]
|
|
if data_format == "NCHW":
|
|
t1 = test_util.NHWCToNCHW(t1)
|
|
strides = test_util.NHWCToNCHW(strides)
|
|
conv = nn_ops.conv2d(
|
|
t1, t2, strides=strides, padding=padding, data_format=data_format)
|
|
if data_format == "NCHW":
|
|
conv = test_util.NCHWToNHWC(conv)
|
|
return conv
|
|
|
|
tensors = []
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
tensors.append(_SetupVal(data_format, use_gpu))
|
|
values = self.evaluate(tensors)
|
|
for i in range(1, len(values)):
|
|
self.assertAllClose(values[0], values[i], rtol=1e-3, atol=1e-3)
|
|
|
|
def _ComputeReferenceDilatedConv(self, tensor_in_sizes, filter_in_sizes,
|
|
stride, dilation, padding, data_format,
|
|
use_gpu):
|
|
x1 = self._CreateNumpyTensor(tensor_in_sizes)
|
|
x2 = self._CreateNumpyTensor(filter_in_sizes)
|
|
with test_util.device(use_gpu):
|
|
t1 = constant_op.constant(x1, shape=tensor_in_sizes)
|
|
t2 = constant_op.constant(x2, shape=filter_in_sizes)
|
|
if isinstance(stride, collections_abc.Iterable):
|
|
strides = list(stride)
|
|
else:
|
|
strides = [stride, stride]
|
|
if data_format == "NCHW":
|
|
t1 = test_util.NHWCToNCHW(t1)
|
|
full_strides = [1, 1] + strides
|
|
full_dilation = [1, 1] + dilation
|
|
else:
|
|
full_strides = [1] + strides + [1]
|
|
full_dilation = [1] + dilation + [1]
|
|
expected = nn_ops.convolution(
|
|
t1,
|
|
t2,
|
|
padding=padding,
|
|
strides=strides,
|
|
dilation_rate=dilation,
|
|
data_format=data_format)
|
|
computed = nn_ops.conv2d(
|
|
t1,
|
|
t2,
|
|
strides=full_strides,
|
|
dilations=full_dilation,
|
|
padding=padding,
|
|
data_format=data_format)
|
|
if data_format == "NCHW":
|
|
expected = test_util.NCHWToNHWC(expected)
|
|
computed = test_util.NCHWToNHWC(computed)
|
|
return expected, computed
|
|
|
|
def _VerifyDilatedConvValues(self, tensor_in_sizes, filter_in_sizes, strides,
|
|
padding, dilations, rtol=1e-4):
|
|
expected_results = []
|
|
computed_results = []
|
|
for data_format, use_gpu in GetTestConfigs():
|
|
expected, computed = self._ComputeReferenceDilatedConv(
|
|
tensor_in_sizes, filter_in_sizes, strides, dilations, padding,
|
|
data_format, use_gpu)
|
|
expected_results.append(expected)
|
|
computed_results.append(computed)
|
|
tolerance = 1e-2 if use_gpu else 1e-5
|
|
expected_values = self.evaluate(expected_results)
|
|
computed_values = self.evaluate(computed_results)
|
|
for e_value, c_value in zip(expected_values, computed_values):
|
|
tf_logging.debug("expected = %s", e_value)
|
|
tf_logging.debug("actual = %s", c_value)
|
|
self.assertAllClose(
|
|
e_value.flatten(), c_value.flatten(), atol=tolerance, rtol=rtol)
|
|
|
|
def _VerifyValues(self,
|
|
tensor_in_sizes,
|
|
filter_in_sizes,
|
|
strides,
|
|
padding,
|
|
expected,
|
|
dilations=(1, 1),
|
|
gpu_only=False,
|
|
test_grappler_layout_optimizer=False,
|
|
tol=1e-5,
|
|
fp16_tol=1e-3):
|
|
if gpu_only and not test.is_gpu_available(cuda_only=True):
|
|
return
|
|
tensors = []
|
|
dilations = list(dilations)
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
if gpu_only and not use_gpu:
|
|
continue
|
|
dtypes_to_test = self._DtypesToTest(use_gpu)
|
|
if not test_grappler_layout_optimizer and data_format == "NHWC":
|
|
dtypes_to_test.append(dtypes.int32)
|
|
for dtype in dtypes_to_test:
|
|
result = self._SetupValuesForDevice(
|
|
tensor_in_sizes,
|
|
filter_in_sizes,
|
|
dilations,
|
|
strides,
|
|
padding,
|
|
data_format,
|
|
dtype,
|
|
use_gpu=use_gpu)
|
|
if test_grappler_layout_optimizer and data_format == "NHWC" and use_gpu:
|
|
# Grappler's layout optimizer will not optimize a fetch node, so
|
|
# this identity allows Grappler to optimize the Conv2D node.
|
|
result = array_ops.identity(result)
|
|
tensors.append(result)
|
|
values = self.evaluate(tensors)
|
|
for i in range(len(tensors)):
|
|
conv = tensors[i]
|
|
value = values[i]
|
|
tf_logging.debug("expected = %s", expected)
|
|
tf_logging.debug("actual = %s", value)
|
|
tol_to_use = fp16_tol if value.dtype == np.float16 else tol
|
|
if np.issubdtype(value.dtype, np.integer):
|
|
self.assertAllEqual(np.rint(expected), np.ravel(value))
|
|
else:
|
|
self.assertAllClose(expected, np.ravel(value), atol=tol_to_use,
|
|
rtol=tol_to_use)
|
|
self.assertShapeEqual(value, conv)
|
|
self.assertEqual(value.dtype, conv.dtype.as_numpy_dtype)
|
|
|
|
def _VerifyExplicitPaddings(self,
|
|
tensor_in_sizes,
|
|
filter_in_sizes,
|
|
strides,
|
|
padding,
|
|
dilations=(1, 1),
|
|
test_grappler_layout_optimizer=False,
|
|
tol=1e-5,
|
|
fp16_tol=1e-3):
|
|
"""Verifies Conv2D with explicit padding generates correct values.
|
|
|
|
It does this by comparing with Conv2D without explicit padding. This
|
|
function assumes Conv2D without explicit padding works correctly.
|
|
|
|
Args:
|
|
tensor_in_sizes: Input tensor dimensions in [batch, input_rows,
|
|
input_cols, input_depth].
|
|
filter_in_sizes: Filter tensor dimensions in [kernel_rows, kernel_cols,
|
|
input_depth, output_depth].
|
|
strides: [row_stride, col_stride] for the convolution;
|
|
padding: Explicit padding amounts.
|
|
dilations: Dilation values
|
|
test_grappler_layout_optimizer: If True, allow the Grappler layout
|
|
optimizer to run, which turns NHWC Conv2Ds on the GPU to NCHW Conv2Ds.
|
|
tol: The absolute and relative tolerance for non-fp16 dtypes.
|
|
fp16_tol: The absolute and relative tolerance for fp16.
|
|
"""
|
|
input_tensor = self._CreateNumpyTensor(tensor_in_sizes)
|
|
filter_tensor = self._CreateNumpyTensor(filter_in_sizes)
|
|
input_tensor = array_ops.pad(input_tensor, [(0, 0)] + padding + [(0, 0)])
|
|
dilations = list(dilations)
|
|
conv2d_result = nn_ops.conv2d(
|
|
input_tensor,
|
|
filter_tensor, [1] + list(strides) + [1],
|
|
"VALID",
|
|
dilations=[1] + dilations + [1])
|
|
expected = list(self.evaluate(array_ops.reshape(conv2d_result, [-1])))
|
|
self._VerifyValues(
|
|
tensor_in_sizes,
|
|
filter_in_sizes,
|
|
strides,
|
|
padding,
|
|
expected,
|
|
dilations,
|
|
test_grappler_layout_optimizer=test_grappler_layout_optimizer,
|
|
tol=tol,
|
|
fp16_tol=fp16_tol)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2D1x1Filter(self):
|
|
expected_output = [
|
|
30.0, 36.0, 42.0, 66.0, 81.0, 96.0, 102.0, 126.0, 150.0, 138.0, 171.0,
|
|
204.0, 174.0, 216.0, 258.0, 210.0, 261.0, 312.0
|
|
]
|
|
self._VerifyValues(
|
|
tensor_in_sizes=[1, 2, 3, 3],
|
|
filter_in_sizes=[1, 1, 3, 3],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
expected=expected_output)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2DExpandedBatch(self):
|
|
tensor_in_sizes_batch = [10, 2, 3, 3]
|
|
tensor_in_sizes_expanded_batch = [2, 5, 2, 3, 3]
|
|
filter_in_sizes = [1, 1, 3, 3]
|
|
filter_in = self._CreateNumpyTensor(filter_in_sizes)
|
|
x1 = self._CreateNumpyTensor(tensor_in_sizes_batch)
|
|
x2 = x1.reshape(tensor_in_sizes_expanded_batch)
|
|
conv1 = nn_ops.conv2d(
|
|
x1,
|
|
filter_in,
|
|
strides=[1, 1],
|
|
padding="VALID")
|
|
conv2 = nn_ops.conv2d(
|
|
x2,
|
|
filter_in,
|
|
strides=[1, 1],
|
|
padding="VALID")
|
|
self.assertEqual(conv1.shape, tensor_in_sizes_batch)
|
|
self.assertEqual(conv2.shape, tensor_in_sizes_expanded_batch)
|
|
self.assertAllEqual(
|
|
conv1,
|
|
self.evaluate(conv2).reshape(conv1.shape))
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConvolutionClass2DExpandedBatch(self):
|
|
tensor_in_sizes_batch = [10, 2, 3, 3]
|
|
tensor_in_sizes_expanded_batch = [2, 5, 2, 3, 3]
|
|
filter_in_sizes = [1, 1, 3, 3]
|
|
filter_in = self._CreateNumpyTensor(filter_in_sizes)
|
|
x1 = self._CreateNumpyTensor(tensor_in_sizes_batch)
|
|
x2 = x1.reshape(tensor_in_sizes_expanded_batch)
|
|
convolver1 = nn_ops.Convolution(
|
|
input_shape=x1.shape,
|
|
filter_shape=filter_in.shape,
|
|
strides=[1, 1],
|
|
padding="VALID")
|
|
self.assertEqual(convolver1.num_batch_dims, 1)
|
|
convolver2 = nn_ops.Convolution(
|
|
input_shape=x2.shape,
|
|
filter_shape=filter_in.shape,
|
|
strides=[1, 1],
|
|
padding="VALID")
|
|
self.assertEqual(convolver2.num_batch_dims, 2)
|
|
conv1 = convolver1(x1, filter_in)
|
|
conv2 = convolver2(x2, filter_in)
|
|
self.assertEqual(conv1.shape, tensor_in_sizes_batch)
|
|
self.assertEqual(conv2.shape, tensor_in_sizes_expanded_batch)
|
|
self.assertAllEqual(
|
|
conv1,
|
|
self.evaluate(conv2).reshape(conv1.shape))
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConvolutionWith2SpatialDimensionsAndExpandedBatch(self):
|
|
tensor_in_sizes_batch = [10, 2, 3, 3]
|
|
tensor_in_sizes_expanded_batch = [2, 5, 2, 3, 3]
|
|
filter_in_sizes = [1, 1, 3, 3]
|
|
filter_in = self._CreateNumpyTensor(filter_in_sizes)
|
|
x1 = self._CreateNumpyTensor(tensor_in_sizes_batch)
|
|
x2 = x1.reshape(tensor_in_sizes_expanded_batch)
|
|
conv1 = nn_ops.convolution(
|
|
x1,
|
|
filter_in,
|
|
strides=[1, 1],
|
|
padding="VALID")
|
|
conv2 = nn_ops.convolution(
|
|
x2,
|
|
filter_in,
|
|
strides=[1, 1],
|
|
padding="VALID")
|
|
self.assertEqual(conv1.shape, tensor_in_sizes_batch)
|
|
self.assertEqual(conv2.shape, tensor_in_sizes_expanded_batch)
|
|
self.assertAllEqual(
|
|
conv1,
|
|
self.evaluate(conv2).reshape(conv1.shape))
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2D2x2Filter2x1Dilation(self):
|
|
self._VerifyDilatedConvValues(
|
|
tensor_in_sizes=[1, 4, 4, 1],
|
|
filter_in_sizes=[2, 2, 1, 1],
|
|
strides=[1, 1],
|
|
dilations=[2, 1],
|
|
padding="VALID")
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2DEmpty(self):
|
|
expected_output = []
|
|
self._VerifyValues(
|
|
tensor_in_sizes=[0, 2, 3, 3],
|
|
filter_in_sizes=[1, 1, 3, 3],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
expected=expected_output)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2DEmptyDilation(self):
|
|
self._VerifyDilatedConvValues(
|
|
tensor_in_sizes=[0, 2, 3, 3],
|
|
filter_in_sizes=[1, 1, 3, 3],
|
|
strides=[1, 1],
|
|
dilations=[2, 1],
|
|
padding="VALID")
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2D2x2Filter(self):
|
|
# The outputs are computed using third_party/py/IPython/notebook.
|
|
expected_output = [2271.0, 2367.0, 2463.0, 2901.0, 3033.0, 3165.0]
|
|
self._VerifyValues(
|
|
tensor_in_sizes=[1, 2, 3, 3],
|
|
filter_in_sizes=[2, 2, 3, 3],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
expected=expected_output)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2D2x2FilterDilation(self):
|
|
self._VerifyDilatedConvValues(
|
|
tensor_in_sizes=[1, 2, 3, 3],
|
|
filter_in_sizes=[2, 2, 3, 3],
|
|
strides=[1, 1],
|
|
dilations=[1, 2],
|
|
padding="VALID")
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2D1x2Filter(self):
|
|
# The outputs are computed using third_party/py/IPython/notebook.
|
|
expected_output = [
|
|
231.0, 252.0, 273.0, 384.0, 423.0, 462.0, 690.0, 765.0, 840.0, 843.0,
|
|
936.0, 1029.0
|
|
]
|
|
self._VerifyValues(
|
|
tensor_in_sizes=[1, 2, 3, 3],
|
|
filter_in_sizes=[1, 2, 3, 3],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
expected=expected_output)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2D1x2FilterDilation(self):
|
|
self._VerifyDilatedConvValues(
|
|
tensor_in_sizes=[1, 2, 3, 3],
|
|
filter_in_sizes=[1, 2, 3, 3],
|
|
strides=[1, 1],
|
|
dilations=[2, 1],
|
|
padding="VALID")
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2D2x2FilterStride2(self):
|
|
expected_output = [2271.0, 2367.0, 2463.0]
|
|
self._VerifyValues(
|
|
tensor_in_sizes=[1, 2, 3, 3],
|
|
filter_in_sizes=[2, 2, 3, 3],
|
|
strides=[2, 2],
|
|
padding="VALID",
|
|
expected=expected_output)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2D2x2FilterStride2Same(self):
|
|
expected_output = [2271.0, 2367.0, 2463.0, 1230.0, 1305.0, 1380.0]
|
|
self._VerifyValues(
|
|
tensor_in_sizes=[1, 2, 3, 3],
|
|
filter_in_sizes=[2, 2, 3, 3],
|
|
strides=[2, 2],
|
|
padding="SAME",
|
|
expected=expected_output)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2D2x2FilterStride1x2(self):
|
|
expected_output = [58.0, 78.0, 98.0, 118.0, 138.0, 158.0]
|
|
self._VerifyValues(
|
|
tensor_in_sizes=[1, 3, 6, 1],
|
|
filter_in_sizes=[2, 2, 1, 1],
|
|
strides=[1, 2],
|
|
padding="VALID",
|
|
expected=expected_output)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2DKernelSmallerThanStrideValid(self):
|
|
expected_output = [65, 95, 275, 305]
|
|
self._VerifyValues(
|
|
tensor_in_sizes=[1, 7, 7, 1],
|
|
filter_in_sizes=[2, 2, 1, 1],
|
|
strides=[3, 3],
|
|
padding="VALID",
|
|
expected=expected_output)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2DKernelSmallerThanStrideSame(self):
|
|
self._VerifyValues(
|
|
tensor_in_sizes=[1, 3, 3, 1],
|
|
filter_in_sizes=[1, 1, 1, 1],
|
|
strides=[2, 2],
|
|
padding="SAME",
|
|
expected=[1, 3, 7, 9])
|
|
|
|
self._VerifyValues(
|
|
tensor_in_sizes=[1, 4, 4, 1],
|
|
filter_in_sizes=[1, 1, 1, 1],
|
|
strides=[2, 2],
|
|
padding="SAME",
|
|
expected=[1, 3, 9, 11])
|
|
|
|
self._VerifyValues(
|
|
tensor_in_sizes=[1, 4, 4, 1],
|
|
filter_in_sizes=[2, 2, 1, 1],
|
|
strides=[3, 3],
|
|
padding="SAME",
|
|
expected=[44, 28, 41, 16])
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2DKernelSizeMatchesInputSize(self):
|
|
self._VerifyValues(
|
|
tensor_in_sizes=[1, 2, 2, 1],
|
|
filter_in_sizes=[2, 2, 1, 2],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
expected=[50, 60])
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2DKernelSizeMatchesInputSizeDilation(self):
|
|
self._VerifyDilatedConvValues(
|
|
tensor_in_sizes=[1, 3, 3, 1],
|
|
filter_in_sizes=[2, 2, 1, 2],
|
|
strides=[1, 1],
|
|
dilations=[2, 2],
|
|
padding="VALID")
|
|
|
|
@test_util.run_in_graph_and_eager_modes()
|
|
def testConv2D0x0Padding(self):
|
|
self._VerifyExplicitPaddings(
|
|
tensor_in_sizes=[1, 2, 3, 3],
|
|
filter_in_sizes=[2, 2, 3, 3],
|
|
strides=[1, 1],
|
|
padding=[[0, 0], [0, 0]])
|
|
|
|
self._VerifyExplicitPaddings(
|
|
tensor_in_sizes=[3, 4, 3, 2],
|
|
filter_in_sizes=[1, 1, 2, 1],
|
|
strides=[2, 2],
|
|
padding=[[0, 0], [0, 0]])
|
|
|
|
@test_util.run_in_graph_and_eager_modes()
|
|
def testConv2D1x1Padding(self):
|
|
self._VerifyExplicitPaddings(
|
|
tensor_in_sizes=[1, 2, 3, 2],
|
|
filter_in_sizes=[2, 2, 2, 2],
|
|
strides=[1, 1],
|
|
padding=[[1, 1], [1, 1]])
|
|
|
|
self._VerifyExplicitPaddings(
|
|
tensor_in_sizes=[1, 2, 2, 1],
|
|
filter_in_sizes=[1, 1, 1, 2],
|
|
strides=[1, 1],
|
|
padding=[[1, 1], [1, 1]])
|
|
|
|
@test_util.run_in_graph_and_eager_modes()
|
|
def testConv2D2x2Padding(self):
|
|
self._VerifyExplicitPaddings(
|
|
tensor_in_sizes=[1, 2, 1, 2],
|
|
filter_in_sizes=[2, 1, 2, 1],
|
|
strides=[1, 1],
|
|
padding=[[2, 2], [2, 2]])
|
|
|
|
self._VerifyExplicitPaddings(
|
|
tensor_in_sizes=[1, 2, 1, 2],
|
|
filter_in_sizes=[1, 1, 2, 1],
|
|
strides=[2, 1],
|
|
padding=[[2, 2], [2, 2]])
|
|
|
|
@test_util.run_in_graph_and_eager_modes()
|
|
def testConv2DOnlyBottomPadding(self):
|
|
self._VerifyExplicitPaddings(
|
|
tensor_in_sizes=[1, 2, 3, 3],
|
|
filter_in_sizes=[2, 2, 3, 2],
|
|
strides=[1, 1],
|
|
padding=[[0, 3], [0, 0]], tol=2e-5)
|
|
|
|
self._VerifyExplicitPaddings(
|
|
tensor_in_sizes=[2, 2, 4, 3],
|
|
filter_in_sizes=[1, 2, 3, 2],
|
|
strides=[2, 2],
|
|
padding=[[0, 3], [0, 0]])
|
|
|
|
@test_util.run_in_graph_and_eager_modes()
|
|
def testConv2DOnlyTopRightPadding(self):
|
|
self._VerifyExplicitPaddings(
|
|
tensor_in_sizes=[1, 2, 3, 3],
|
|
filter_in_sizes=[2, 2, 3, 2],
|
|
strides=[1, 1],
|
|
padding=[[1, 0], [0, 2]],
|
|
tol=5e-5)
|
|
|
|
self._VerifyExplicitPaddings(
|
|
tensor_in_sizes=[1, 2, 4, 2],
|
|
filter_in_sizes=[2, 2, 2, 2],
|
|
strides=[1, 3],
|
|
padding=[[1, 0], [0, 2]])
|
|
|
|
@test_util.run_in_graph_and_eager_modes()
|
|
def testConv2DLotsPadding(self):
|
|
self._VerifyExplicitPaddings(
|
|
tensor_in_sizes=[1, 1, 1, 3],
|
|
filter_in_sizes=[2, 2, 3, 3],
|
|
strides=[1, 1],
|
|
padding=[[3, 4], [4, 2]])
|
|
|
|
self._VerifyExplicitPaddings(
|
|
tensor_in_sizes=[1, 2, 1, 1],
|
|
filter_in_sizes=[2, 2, 1, 3],
|
|
strides=[2, 1],
|
|
padding=[[3, 4], [4, 2]])
|
|
|
|
@test_util.run_in_graph_and_eager_modes()
|
|
def testConv2DExplicitPaddingWithDilations(self):
|
|
self._VerifyExplicitPaddings(
|
|
tensor_in_sizes=[1, 3, 2, 1],
|
|
filter_in_sizes=[1, 2, 1, 2],
|
|
strides=[1, 1],
|
|
padding=[[1, 0], [0, 1]],
|
|
dilations=[2, 1])
|
|
|
|
self._VerifyExplicitPaddings(
|
|
tensor_in_sizes=[1, 2, 3, 2],
|
|
filter_in_sizes=[3, 2, 2, 1],
|
|
strides=[1, 1],
|
|
padding=[[2, 1], [1, 2]],
|
|
dilations=[2, 3])
|
|
|
|
def testConv2DExplicitPaddingWithLayoutOptimizer(self):
|
|
# Test with Grappler's layout optimizer, to ensure the layout optimizer
|
|
# handles explicit padding correctly.
|
|
self._VerifyExplicitPaddings(
|
|
tensor_in_sizes=[1, 3, 2, 1],
|
|
filter_in_sizes=[1, 2, 1, 2],
|
|
strides=[1, 1],
|
|
padding=[[1, 0], [0, 1]],
|
|
dilations=[2, 1],
|
|
test_grappler_layout_optimizer=True)
|
|
|
|
self._VerifyExplicitPaddings(
|
|
tensor_in_sizes=[1, 2, 3, 2],
|
|
filter_in_sizes=[3, 2, 2, 1],
|
|
strides=[1, 1],
|
|
padding=[[2, 1], [1, 2]],
|
|
dilations=[2, 3],
|
|
test_grappler_layout_optimizer=True)
|
|
|
|
def _VerifyGroupConvFwd(self, tensor_in_sizes, filter_in_sizes, dilations,
|
|
strides, padding, data_format, dtype):
|
|
"""Verify the output of group convolution is equal to a for-loop implementation.
|
|
|
|
Args:
|
|
tensor_in_sizes: Input tensor dimensions in [batch, input_rows,
|
|
input_cols, input_depth].
|
|
filter_in_sizes: Filter tensor dimensions in [kernel_rows, kernel_cols,
|
|
input_depth, output_depth].
|
|
dilations: Dilated rate: [col_dilation, row_dilation]
|
|
strides: Stride: [col_stride, row_stride]
|
|
padding: Padding type.
|
|
data_format: Format of the data tensors.
|
|
dtype: Data type for inputs and outputs.
|
|
"""
|
|
tensor_in = self._CreateNumpyTensor(tensor_in_sizes)
|
|
filter_in = self._CreateNumpyTensor(filter_in_sizes)
|
|
num_groups = tensor_in_sizes[3] // filter_in_sizes[2]
|
|
assert num_groups > 1 and \
|
|
filter_in_sizes[2] * num_groups == tensor_in_sizes[3]
|
|
with test_util.device(True):
|
|
t1 = constant_op.constant(tensor_in, dtype=dtype)
|
|
t2 = constant_op.constant(filter_in, dtype=dtype)
|
|
strides = [1] + strides + [1]
|
|
dilations = [1] + dilations + [1]
|
|
if data_format == "NCHW":
|
|
t1 = test_util.NHWCToNCHW(t1)
|
|
strides = test_util.NHWCToNCHW(strides)
|
|
dilations = test_util.NHWCToNCHW(dilations)
|
|
t1_splits = array_ops.split(t1, num_groups, axis=1)
|
|
else:
|
|
t1_splits = array_ops.split(t1, num_groups, axis=3)
|
|
t2_splits = array_ops.split(t2, num_groups, axis=3)
|
|
|
|
def MakeConv2d(inputs, filters):
|
|
return nn_ops.conv2d(
|
|
inputs,
|
|
filters,
|
|
strides,
|
|
padding,
|
|
dilations=dilations,
|
|
data_format=data_format)
|
|
|
|
group_conv = MakeConv2d(t1, t2)
|
|
group_conv_loop = array_ops.concat(
|
|
[MakeConv2d(t1s, t2s) for t1s, t2s in zip(t1_splits, t2_splits)],
|
|
axis=1 if data_format == "NCHW" else 3)
|
|
|
|
results = self.evaluate([group_conv, group_conv_loop])
|
|
tol_to_use = 1e-5
|
|
self.assertAllClose(
|
|
results[0], results[1], atol=tol_to_use, rtol=tol_to_use)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
@test_util.run_cuda_only
|
|
def testConv2DGroupConvFwd(self):
|
|
for data_format in ["NHWC", "NCHW"]:
|
|
for dilation in [1, 2]:
|
|
for stride in [1, 2]:
|
|
self._VerifyGroupConvFwd([10, 32, 32, 16], [3, 3, 4, 8],
|
|
dilations=[dilation, dilation],
|
|
strides=[stride, stride],
|
|
padding="SAME",
|
|
data_format=data_format,
|
|
dtype=dtypes.float32)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
@test_util.run_cuda_only
|
|
def testInputGradientGroupConv(self):
|
|
for data_format in ["NCHW", "NHWC"]:
|
|
for test_input in [True, False]:
|
|
self.ConstructAndTestGradient(
|
|
batch=2,
|
|
input_rows=5,
|
|
input_cols=4,
|
|
filter_rows=3,
|
|
filter_cols=3,
|
|
num_groups=2,
|
|
padding="VALID",
|
|
in_depth=4,
|
|
out_depth=6,
|
|
stride_rows=1,
|
|
stride_cols=1,
|
|
test_input=test_input,
|
|
data_format=data_format,
|
|
use_gpu=True,
|
|
max_err=0.005)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
@test_util.run_cuda_only
|
|
def testFilterGradientGroupConv(self):
|
|
for data_format in ["NCHW", "NHWC"]:
|
|
for test_input in [True, False]:
|
|
self.ConstructAndTestGradient(
|
|
batch=2,
|
|
input_rows=5,
|
|
input_cols=4,
|
|
filter_rows=3,
|
|
filter_cols=3,
|
|
num_groups=2,
|
|
padding="VALID",
|
|
in_depth=4,
|
|
out_depth=6,
|
|
stride_rows=1,
|
|
stride_cols=1,
|
|
test_input=test_input,
|
|
data_format=data_format,
|
|
use_gpu=True,
|
|
max_err=0.005)
|
|
# TODO(yzhwang): this currently fails.
|
|
# self._VerifyValues(tensor_in_sizes=[1, 8, 8, 1],
|
|
# filter_in_sizes=[2, 2, 1, 1],
|
|
# strides=[4, 4], padding="SAME",
|
|
# expected=[72, 112, 392, 432])
|
|
|
|
# Testing for backprops
|
|
def _RunAndVerifyBackpropInput(self,
|
|
input_sizes,
|
|
filter_sizes,
|
|
output_sizes,
|
|
strides,
|
|
padding,
|
|
expected,
|
|
data_format,
|
|
use_gpu,
|
|
err,
|
|
dilations=(1, 1)):
|
|
if use_gpu and not test.is_gpu_available(cuda_only=True):
|
|
return
|
|
x1 = self._CreateNumpyTensor(filter_sizes)
|
|
x2 = self._CreateNumpyTensor(output_sizes)
|
|
dilations = list(dilations)
|
|
with test_util.device(use_gpu):
|
|
if len(input_sizes) == 4:
|
|
if data_format == "NCHW":
|
|
input_sizes = test_util.NHWCToNCHW(input_sizes)
|
|
t0 = constant_op.constant(input_sizes, shape=[len(input_sizes)])
|
|
t1 = constant_op.constant(x1, shape=filter_sizes)
|
|
t2 = constant_op.constant(x2, shape=output_sizes)
|
|
strides = [1] + strides + [1]
|
|
dilations = [1] + dilations + [1]
|
|
if isinstance(padding, (list, tuple)):
|
|
padding = [(0, 0)] + padding + [(0, 0)]
|
|
if data_format == "NCHW":
|
|
t2 = test_util.NHWCToNCHW(t2)
|
|
strides = test_util.NHWCToNCHW(strides)
|
|
dilations = test_util.NHWCToNCHW(dilations)
|
|
if isinstance(padding, (list, tuple)):
|
|
padding = test_util.NHWCToNCHW((padding))
|
|
conv = nn_ops.conv2d_backprop_input(
|
|
t0,
|
|
t1,
|
|
t2,
|
|
strides=strides,
|
|
padding=padding,
|
|
data_format=data_format,
|
|
dilations=dilations)
|
|
if data_format == "NCHW":
|
|
conv = test_util.NCHWToNHWC(conv)
|
|
# "values" consists of two tensors for two backprops
|
|
value = self.evaluate(conv)
|
|
self.assertShapeEqual(value, conv)
|
|
tf_logging.debug("expected = %s", expected)
|
|
tf_logging.debug("actual = %s", value)
|
|
self.assertAllCloseAccordingToType(expected, value.flatten(), atol=1e-5)
|
|
|
|
def _CompareBackpropInput(self, input_sizes, filter_sizes, output_sizes,
|
|
conv_strides, padding):
|
|
x1 = np.random.rand(*filter_sizes).astype(np.float32)
|
|
x2 = np.random.rand(*output_sizes).astype(np.float32)
|
|
|
|
def _GetVal(data_format, use_gpu):
|
|
with test_util.device(use_gpu):
|
|
if data_format == "NCHW":
|
|
new_input_sizes = test_util.NHWCToNCHW(input_sizes)
|
|
else:
|
|
new_input_sizes = input_sizes
|
|
t0 = constant_op.constant(new_input_sizes, shape=[len(new_input_sizes)])
|
|
t1 = constant_op.constant(x1, shape=filter_sizes)
|
|
t2 = constant_op.constant(x2, shape=output_sizes)
|
|
strides = [1] + conv_strides + [1]
|
|
if data_format == "NCHW":
|
|
t2 = test_util.NHWCToNCHW(t2)
|
|
strides = test_util.NHWCToNCHW(strides)
|
|
conv = nn_ops.conv2d_backprop_input(
|
|
t0,
|
|
t1,
|
|
t2,
|
|
strides=strides,
|
|
padding=padding,
|
|
data_format=data_format)
|
|
if data_format == "NCHW":
|
|
conv = test_util.NCHWToNHWC(conv)
|
|
ret = self.evaluate(conv)
|
|
self.assertShapeEqual(ret, conv)
|
|
return ret
|
|
|
|
values = []
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
values.append(_GetVal(data_format, use_gpu))
|
|
|
|
for i in range(1, len(values)):
|
|
self.assertAllClose(values[0], values[i], rtol=1e-2, atol=1e-2)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2D2x2Depth1ValidBackpropInput(self):
|
|
expected_output = [1.0, 4.0, 4.0, 3.0, 10.0, 8.0]
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropInput(
|
|
input_sizes=[1, 2, 3, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
output_sizes=[1, 1, 2, 1],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
expected=expected_output,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
err=1e-5)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2DEmptyBackpropInput(self):
|
|
expected_output = []
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropInput(
|
|
input_sizes=[0, 2, 3, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
output_sizes=[0, 1, 2, 1],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
expected=expected_output,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
err=1e-5)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2D2x2Depth3ValidBackpropInput(self):
|
|
expected_output = [
|
|
14.0, 32.0, 50.0, 100.0, 163.0, 226.0, 167.0, 212.0, 257.0, 122.0,
|
|
140.0, 158.0, 478.0, 541.0, 604.0, 437.0, 482.0, 527.0
|
|
]
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
# The GPU version of this test is not very stable. So adjusting the
|
|
# error threshold to 1e-4.
|
|
self._RunAndVerifyBackpropInput(
|
|
input_sizes=[1, 2, 3, 3],
|
|
filter_sizes=[2, 2, 3, 3],
|
|
output_sizes=[1, 1, 2, 3],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
expected=expected_output,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
err=1e-4)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2D2x2Depth3ValidBackpropInputStride1x2(self):
|
|
expected_output = [
|
|
1.0, 2.0, 2.0, 4.0, 3.0, 6.0, 7.0, 12.0, 11.0, 18.0, 15.0, 24.0, 12.0,
|
|
16.0, 15.0, 20.0, 18.0, 24.0
|
|
]
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropInput(
|
|
input_sizes=[1, 3, 6, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
output_sizes=[1, 2, 3, 1],
|
|
strides=[1, 2],
|
|
padding="VALID",
|
|
expected=expected_output,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
err=1e-5)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2DStrideTwoFilterOneSameBackpropInput(self):
|
|
expected_output = [
|
|
1.0, 0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0, 0.0, 4.0, 0.0, 0.0, 0.0,
|
|
0.0, 0.0
|
|
]
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropInput(
|
|
input_sizes=[1, 4, 4, 1],
|
|
filter_sizes=[1, 1, 1, 1],
|
|
output_sizes=[1, 2, 2, 1],
|
|
strides=[2, 2],
|
|
padding="SAME",
|
|
expected=expected_output,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
err=1e-5)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2DKernelSizeMatchesInputSizeBackpropInput(self):
|
|
expected_output = [5.0, 11.0, 17.0, 23.0]
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropInput(
|
|
input_sizes=[1, 2, 2, 1],
|
|
filter_sizes=[2, 2, 1, 2],
|
|
output_sizes=[1, 1, 1, 2],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
expected=expected_output,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
err=1e-5)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
@test_util.disable_xla("XLA requires input_sizes to be a 4D shape.")
|
|
def testConv2DInputSizesContainsOnlySpatialDimensionsBackpropInput(self):
|
|
expected_output = [5.0, 11.0, 17.0, 23.0]
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropInput(
|
|
input_sizes=[2, 2],
|
|
filter_sizes=[2, 2, 1, 2],
|
|
output_sizes=[1, 1, 1, 2],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
expected=expected_output,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
err=1e-5)
|
|
|
|
# Testing for backprops
|
|
def _RunAndVerifyBackpropFilter(self,
|
|
input_sizes,
|
|
filter_sizes,
|
|
output_sizes,
|
|
strides,
|
|
padding,
|
|
expected,
|
|
data_format,
|
|
use_gpu,
|
|
dilations=(1, 1),
|
|
err=1e-5):
|
|
x0 = self._CreateNumpyTensor(input_sizes)
|
|
x2 = self._CreateNumpyTensor(output_sizes)
|
|
dilations = list(dilations)
|
|
explicit_strides = [1] + strides + [1]
|
|
new_padding = padding
|
|
new_dilations = [1] + dilations + [1]
|
|
if isinstance(new_padding, (list, tuple)):
|
|
new_padding = [(0, 0)] + new_padding + [(0, 0)]
|
|
if data_format == "NCHW":
|
|
explicit_strides = test_util.NHWCToNCHW(explicit_strides)
|
|
new_dilations = test_util.NHWCToNCHW(new_dilations)
|
|
if isinstance(padding, (list, tuple)):
|
|
new_padding = test_util.NHWCToNCHW(new_padding)
|
|
for dtype in self._DtypesToTest(use_gpu=use_gpu):
|
|
with test_util.device(use_gpu):
|
|
t0 = constant_op.constant(x0, shape=input_sizes, dtype=dtype)
|
|
t1 = constant_op.constant(filter_sizes, shape=[len(filter_sizes)])
|
|
t2 = constant_op.constant(x2, shape=output_sizes, dtype=dtype)
|
|
if data_format == "NCHW":
|
|
t0 = test_util.NHWCToNCHW(t0)
|
|
t2 = test_util.NHWCToNCHW(t2)
|
|
conv = nn_ops.conv2d_backprop_filter(
|
|
t0,
|
|
t1,
|
|
t2,
|
|
strides=explicit_strides,
|
|
padding=new_padding,
|
|
dilations=new_dilations,
|
|
data_format=data_format)
|
|
value = self.evaluate(conv)
|
|
self.assertShapeEqual(value, conv)
|
|
tf_logging.debug("expected = %s", expected)
|
|
tf_logging.debug("actual = %s", value)
|
|
self.assertArrayNear(expected, value.flatten(), err)
|
|
|
|
def _CompareBackFilter(self, input_sizes, filter_sizes, output_sizes,
|
|
conv_strides, padding):
|
|
x0 = np.random.rand(*input_sizes).astype(np.float32)
|
|
x2 = np.random.rand(*output_sizes).astype(np.float32)
|
|
|
|
def _GetVal(data_format, use_gpu):
|
|
with test_util.device(use_gpu):
|
|
t0 = constant_op.constant(x0, shape=input_sizes)
|
|
t1 = constant_op.constant(filter_sizes, shape=[len(filter_sizes)])
|
|
t2 = constant_op.constant(x2, shape=output_sizes)
|
|
strides = [1] + conv_strides + [1]
|
|
if data_format == "NCHW":
|
|
t0 = test_util.NHWCToNCHW(t0)
|
|
t2 = test_util.NHWCToNCHW(t2)
|
|
strides = test_util.NHWCToNCHW(strides)
|
|
conv = nn_ops.conv2d_backprop_filter(
|
|
t0,
|
|
t1,
|
|
t2,
|
|
strides=strides,
|
|
padding=padding,
|
|
data_format=data_format)
|
|
ret = self.evaluate(conv)
|
|
self.assertShapeEqual(ret, conv)
|
|
return ret
|
|
|
|
values = []
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
values.append(_GetVal(data_format, use_gpu))
|
|
for i in range(1, len(values)):
|
|
self.assertAllClose(values[0], values[i], rtol=1e-4, atol=1e-4)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2D2x2Depth1ValidBackpropFilter(self):
|
|
expected = [5.0, 8.0, 14.0, 17.0]
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropFilter(
|
|
input_sizes=[1, 2, 3, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
output_sizes=[1, 1, 2, 1],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
expected=expected,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2DEmptyBackpropFilter(self):
|
|
expected = []
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropFilter(
|
|
input_sizes=[1, 2, 3, 1],
|
|
filter_sizes=[2, 2, 1, 0],
|
|
output_sizes=[1, 1, 2, 0],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
expected=expected,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2DBackpropFilterWithEmptyInput(self):
|
|
expected = [0, 0, 0, 0]
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropFilter(
|
|
input_sizes=[0, 2, 3, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
output_sizes=[0, 1, 2, 1],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
expected=expected,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2D2x2Depth3ValidBackpropFilter(self):
|
|
expected = [
|
|
17.0, 22.0, 27.0, 22.0, 29.0, 36.0, 27.0, 36.0, 45.0, 32.0, 43.0, 54.0,
|
|
37.0, 50.0, 63.0, 42.0, 57.0, 72.0, 62.0, 85.0, 108.0, 67.0, 92.0,
|
|
117.0, 72.0, 99.0, 126.0, 77.0, 106.0, 135.0, 82.0, 113.0, 144.0, 87.0,
|
|
120.0, 153.0
|
|
]
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropFilter(
|
|
input_sizes=[1, 2, 3, 3],
|
|
filter_sizes=[2, 2, 3, 3],
|
|
output_sizes=[1, 1, 2, 3],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
expected=expected,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2D2x2Depth3ValidBackpropFilterStride1x2(self):
|
|
expected = [161.0, 182.0, 287.0, 308.0]
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropFilter(
|
|
input_sizes=[1, 3, 6, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
output_sizes=[1, 2, 3, 1],
|
|
strides=[1, 2],
|
|
padding="VALID",
|
|
expected=expected,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2DStrideTwoFilterOneSameBackpropFilter(self):
|
|
expected_output = [78.]
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropFilter(
|
|
input_sizes=[1, 4, 4, 1],
|
|
filter_sizes=[1, 1, 1, 1],
|
|
output_sizes=[1, 2, 2, 1],
|
|
strides=[2, 2],
|
|
padding="SAME",
|
|
expected=expected_output,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testConv2DKernelSizeMatchesInputSizeBackpropFilter(self):
|
|
expected_output = [1.0, 2.0, 2.0, 4.0, 3.0, 6.0, 4.0, 8.0]
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropFilter(
|
|
input_sizes=[1, 2, 2, 1],
|
|
filter_sizes=[2, 2, 1, 2],
|
|
output_sizes=[1, 1, 1, 2],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
expected=expected_output,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
# Testing for backprops
|
|
def _RunAndVerifyBackpropInputDilation(self, input_sizes, filter_sizes,
|
|
output_sizes, strides, dilations,
|
|
padding, data_format, use_gpu, err):
|
|
x1 = self._CreateNumpyTensor(input_sizes)
|
|
x2 = self._CreateNumpyTensor(filter_sizes)
|
|
default_dilations = (dilations[0] == 1 and dilations[1] == 1)
|
|
if default_dilations or use_gpu:
|
|
with self.cached_session(use_gpu=use_gpu) as sess:
|
|
if data_format == "NCHW":
|
|
input_sizes = test_util.NHWCToNCHW(input_sizes)
|
|
t1 = constant_op.constant(x1, shape=input_sizes)
|
|
t2 = constant_op.constant(x2, shape=filter_sizes)
|
|
full_strides = [1] + strides + [1]
|
|
full_dilations = [1] + dilations + [1]
|
|
if data_format == "NCHW":
|
|
full_strides = test_util.NHWCToNCHW(full_strides)
|
|
full_dilations = test_util.NHWCToNCHW(full_dilations)
|
|
conv_forward = nn_ops.conv2d(
|
|
t1,
|
|
t2,
|
|
strides=full_strides,
|
|
dilations=full_dilations,
|
|
padding=padding,
|
|
data_format=data_format)
|
|
conv_forward_2 = nn_ops.convolution(
|
|
t1,
|
|
t2,
|
|
padding=padding,
|
|
strides=strides,
|
|
dilation_rate=dilations,
|
|
data_format=data_format)
|
|
if data_format == "NCHW":
|
|
conv_forward = test_util.NCHWToNHWC(conv_forward)
|
|
conv_forward_2 = test_util.NCHWToNHWC(conv_forward_2)
|
|
conv = gradients_impl.gradients(conv_forward, t1)[0]
|
|
conv_2 = gradients_impl.gradients(conv_forward_2, t1)[0]
|
|
# "values" consists of two tensors for two backprops
|
|
value = self.evaluate(conv)
|
|
value_2 = self.evaluate(conv_2)
|
|
self.assertShapeEqual(value, conv)
|
|
self.assertShapeEqual(value_2, conv_2)
|
|
tf_logging.debug("expected = %s", value_2)
|
|
tf_logging.debug("actual = %s", value)
|
|
self.assertArrayNear(value_2.flatten(), value.flatten(), err)
|
|
|
|
# Testing for backprops
|
|
def _RunAndVerifyBackpropFilterDilation(self, input_sizes, filter_sizes,
|
|
output_sizes, strides, dilations,
|
|
padding, data_format, use_gpu, err):
|
|
x1 = self._CreateNumpyTensor(input_sizes)
|
|
x2 = self._CreateNumpyTensor(filter_sizes)
|
|
default_dilations = (dilations[0] == 1 and dilations[1] == 1)
|
|
if default_dilations or use_gpu:
|
|
with self.cached_session(use_gpu=use_gpu) as sess:
|
|
if data_format == "NCHW":
|
|
input_sizes = test_util.NHWCToNCHW(input_sizes)
|
|
t1 = constant_op.constant(x1, shape=input_sizes)
|
|
t2 = constant_op.constant(x2, shape=filter_sizes)
|
|
full_strides = [1] + strides + [1]
|
|
full_dilations = [1] + dilations + [1]
|
|
if data_format == "NCHW":
|
|
full_strides = test_util.NHWCToNCHW(full_strides)
|
|
full_dilations = test_util.NHWCToNCHW(full_dilations)
|
|
conv_forward = nn_ops.conv2d(
|
|
t1,
|
|
t2,
|
|
strides=full_strides,
|
|
dilations=full_dilations,
|
|
padding=padding,
|
|
data_format=data_format)
|
|
conv_forward_2 = nn_ops.convolution(
|
|
t1,
|
|
t2,
|
|
padding=padding,
|
|
strides=strides,
|
|
dilation_rate=dilations,
|
|
data_format=data_format)
|
|
if data_format == "NCHW":
|
|
conv_forward = test_util.NCHWToNHWC(conv_forward)
|
|
conv_forward_2 = test_util.NCHWToNHWC(conv_forward_2)
|
|
conv = gradients_impl.gradients(conv_forward, t2)[0]
|
|
conv_2 = gradients_impl.gradients(conv_forward, t2)[0]
|
|
value = self.evaluate(conv)
|
|
value_2 = self.evaluate(conv_2)
|
|
self.assertShapeEqual(value, conv)
|
|
self.assertShapeEqual(value_2, conv_2)
|
|
tf_logging.debug("expected = %s", value_2)
|
|
tf_logging.debug("actual = %s", value)
|
|
self.assertArrayNear(value_2.flatten(), value.flatten(), err)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testConv2D2x2Depth3ValidBackpropFilterStride1x1Dilation2x1(self):
|
|
if test.is_gpu_available(cuda_only=True) or test_util.IsMklEnabled():
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropFilterDilation(
|
|
input_sizes=[1, 3, 6, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
output_sizes=[1, 1, 5, 1],
|
|
strides=[1, 1],
|
|
dilations=[2, 1],
|
|
padding="VALID",
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
err=1e-5)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testConv2D2x2Depth1ValidBackpropFilterDilation1x2(self):
|
|
if test.is_gpu_available(cuda_only=True) or test_util.IsMklEnabled():
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropFilterDilation(
|
|
input_sizes=[1, 2, 3, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
output_sizes=[1, 1, 2, 1],
|
|
strides=[1, 1],
|
|
dilations=[1, 2],
|
|
padding="VALID",
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
err=1e-5)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testConv2DEmptyBackpropFilterDilation1x2(self):
|
|
if test.is_gpu_available(cuda_only=True) or test_util.IsMklEnabled():
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropFilterDilation(
|
|
input_sizes=[1, 2, 3, 1],
|
|
filter_sizes=[2, 2, 1, 0],
|
|
output_sizes=[1, 1, 2, 0],
|
|
strides=[1, 1],
|
|
dilations=[1, 2],
|
|
padding="VALID",
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
err=1e-5)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testConv2D2x2Depth3ValidBackpropFilterDilation2x2(self):
|
|
if test.is_gpu_available(cuda_only=True) or test_util.IsMklEnabled():
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropFilterDilation(
|
|
input_sizes=[1, 3, 4, 3],
|
|
filter_sizes=[2, 2, 3, 3],
|
|
output_sizes=[1, 1, 2, 3],
|
|
strides=[1, 1],
|
|
dilations=[2, 2],
|
|
padding="VALID",
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
err=1e-5)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testConv2DKernelSizeMatchesInputSizeBackpropFilterDilation2x2(self):
|
|
if test.is_gpu_available(cuda_only=True) or test_util.IsMklEnabled():
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropFilterDilation(
|
|
input_sizes=[1, 3, 3, 1],
|
|
filter_sizes=[2, 2, 1, 2],
|
|
output_sizes=[1, 1, 1, 2],
|
|
strides=[1, 1],
|
|
dilations=[2, 2],
|
|
padding="VALID",
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
err=1e-5)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testConv2D2x2Depth3ValidBackpropInputStride1x1Dilation2x1(self):
|
|
if test.is_gpu_available(cuda_only=True) or test_util.IsMklEnabled():
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropInputDilation(
|
|
input_sizes=[1, 3, 6, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
output_sizes=[1, 1, 5, 1],
|
|
strides=[1, 1],
|
|
dilations=[2, 1],
|
|
padding="VALID",
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
err=1e-5)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testConv2D2x2Depth1ValidBackpropInputDilation1x2(self):
|
|
if test.is_gpu_available(cuda_only=True) or test_util.IsMklEnabled():
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropInputDilation(
|
|
input_sizes=[1, 2, 3, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
output_sizes=[1, 1, 2, 1],
|
|
strides=[1, 1],
|
|
dilations=[1, 2],
|
|
padding="VALID",
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
err=1e-5)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testConv2DEmptyBackpropInputDilation1x2(self):
|
|
if test.is_gpu_available(cuda_only=True) or test_util.IsMklEnabled():
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropInputDilation(
|
|
input_sizes=[0, 2, 3, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
output_sizes=[0, 1, 2, 1],
|
|
strides=[1, 1],
|
|
dilations=[1, 2],
|
|
padding="VALID",
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
err=1e-5)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testConv2D2x2Depth3ValidBackpropInputDilation2x1(self):
|
|
if test.is_gpu_available(cuda_only=True) or test_util.IsMklEnabled():
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
# The GPU version of this test is not very stable. So adjusting the
|
|
# error threshold to 1e-4.
|
|
self._RunAndVerifyBackpropInputDilation(
|
|
input_sizes=[1, 3, 2, 3],
|
|
filter_sizes=[2, 2, 3, 3],
|
|
output_sizes=[1, 1, 2, 3],
|
|
strides=[1, 1],
|
|
dilations=[2, 1],
|
|
padding="VALID",
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
err=1e-4)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testConv2DKernelSizeMatchesInputSizeBackpropInputDilation2x2(self):
|
|
if test.is_gpu_available(cuda_only=True) or test_util.IsMklEnabled():
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropInputDilation(
|
|
input_sizes=[1, 3, 3, 1],
|
|
filter_sizes=[2, 2, 1, 2],
|
|
output_sizes=[1, 1, 1, 2],
|
|
strides=[1, 1],
|
|
dilations=[2, 2],
|
|
padding="VALID",
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
err=1e-5)
|
|
|
|
def _RunAndVerifyBackpropInputExplicitPadding(self,
|
|
input_sizes,
|
|
filter_sizes,
|
|
output_sizes,
|
|
strides,
|
|
padding,
|
|
data_format,
|
|
use_gpu,
|
|
dilations=(1, 1),
|
|
err=2e-5):
|
|
if use_gpu and not test.is_gpu_available(cuda_only=True):
|
|
return
|
|
if not use_gpu and dilations != (1, 1):
|
|
return # Non-default dilations is currently not supported on the CPU.
|
|
|
|
x1 = self._CreateNumpyTensor(filter_sizes)
|
|
x2 = self._CreateNumpyTensor(output_sizes)
|
|
dilations = list(dilations)
|
|
padded_input_sizes = input_sizes[:]
|
|
padded_input_sizes[1] += padding[0][0] + padding[0][1]
|
|
padded_input_sizes[2] += padding[1][0] + padding[1][1]
|
|
c = nn_ops.conv2d_backprop_input(
|
|
padded_input_sizes,
|
|
x1,
|
|
x2,
|
|
strides=[1] + strides + [1],
|
|
padding="VALID",
|
|
dilations=[1] + dilations + [1])
|
|
c = c[:, padding[0][0]:(c.shape[1] - padding[0][1]), padding[1][0]:(
|
|
c.shape[2] - padding[1][1]), :]
|
|
expected = list(self.evaluate(array_ops.reshape(c, [-1])))
|
|
self._RunAndVerifyBackpropInput(
|
|
input_sizes,
|
|
filter_sizes,
|
|
output_sizes,
|
|
strides,
|
|
padding,
|
|
expected,
|
|
data_format,
|
|
use_gpu=use_gpu,
|
|
err=err,
|
|
dilations=dilations)
|
|
|
|
@test_util.run_in_graph_and_eager_modes()
|
|
def testConv2D2x2Depth1Padding0x0BackpropInput(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropInputExplicitPadding(
|
|
input_sizes=[1, 2, 3, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
output_sizes=[1, 1, 2, 1],
|
|
strides=[1, 1],
|
|
padding=[[0, 0], [0, 0]],
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
self._RunAndVerifyBackpropInputExplicitPadding(
|
|
input_sizes=[1, 3, 4, 2],
|
|
filter_sizes=[2, 2, 2, 3],
|
|
output_sizes=[1, 1, 2, 3],
|
|
strides=[2, 2],
|
|
padding=[[0, 0], [0, 0]],
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.run_in_graph_and_eager_modes()
|
|
def testConv2D2x2Depth1Padding1x1BackpropInput(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropInputExplicitPadding(
|
|
input_sizes=[1, 2, 3, 1],
|
|
filter_sizes=[2, 2, 1, 2],
|
|
output_sizes=[1, 3, 4, 2],
|
|
strides=[1, 1],
|
|
padding=[[1, 1], [1, 1]],
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
err=1e-4)
|
|
|
|
self._RunAndVerifyBackpropInputExplicitPadding(
|
|
input_sizes=[1, 2, 3, 2],
|
|
filter_sizes=[1, 1, 2, 1],
|
|
output_sizes=[1, 4, 3, 1],
|
|
strides=[1, 2],
|
|
padding=[[1, 1], [1, 1]],
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
self._RunAndVerifyBackpropInputExplicitPadding(
|
|
input_sizes=[1, 4, 3, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
output_sizes=[1, 4, 2, 1],
|
|
strides=[1, 2],
|
|
padding=[[1, 1], [1, 1]],
|
|
data_format=data_format,
|
|
dilations=[2, 2], use_gpu=use_gpu)
|
|
|
|
@test_util.run_in_graph_and_eager_modes()
|
|
def testConv2D2x2Depth1Padding2x2BackpropInput(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropInputExplicitPadding(
|
|
input_sizes=[2, 3, 1, 1],
|
|
filter_sizes=[2, 1, 1, 1],
|
|
output_sizes=[2, 2, 5, 1],
|
|
strides=[3, 1],
|
|
padding=[[2, 2], [2, 2]],
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
self._RunAndVerifyBackpropInputExplicitPadding(
|
|
input_sizes=[1, 3, 6, 1],
|
|
filter_sizes=[3, 2, 1, 1],
|
|
output_sizes=[1, 3, 4, 1],
|
|
strides=[1, 2],
|
|
padding=[[2, 2], [2, 2]],
|
|
data_format=data_format,
|
|
dilations=[2, 3],
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.run_in_graph_and_eager_modes()
|
|
def testConv2D2x2Depth1Padding_1_8_4_1_BackpropInput(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropInputExplicitPadding(
|
|
input_sizes=[1, 2, 3, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
output_sizes=[1, 10, 8, 1],
|
|
strides=[1, 1],
|
|
padding=[[1, 8], [4, 2]],
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
err=5e-5)
|
|
|
|
self._RunAndVerifyBackpropInputExplicitPadding(
|
|
input_sizes=[1, 5, 3, 1],
|
|
filter_sizes=[3, 2, 1, 1],
|
|
output_sizes=[1, 4, 8, 1],
|
|
strides=[3, 1],
|
|
padding=[[1, 8], [4, 2]],
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.run_in_graph_and_eager_modes()
|
|
def testConv2D2x2Depth1Padding_5_0_2_2_BackpropInput(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropInputExplicitPadding(
|
|
input_sizes=[1, 3, 3, 1],
|
|
filter_sizes=[2, 1, 1, 1],
|
|
output_sizes=[1, 7, 7, 1],
|
|
strides=[1, 1],
|
|
padding=[[5, 0], [2, 2]],
|
|
data_format=data_format,
|
|
err=5e-5,
|
|
use_gpu=use_gpu)
|
|
|
|
self._RunAndVerifyBackpropInputExplicitPadding(
|
|
input_sizes=[1, 4, 2, 1],
|
|
filter_sizes=[3, 3, 1, 1],
|
|
output_sizes=[1, 5, 2, 1],
|
|
strides=[1, 2],
|
|
padding=[[5, 0], [2, 2]],
|
|
data_format=data_format,
|
|
dilations=[2, 1],
|
|
use_gpu=use_gpu)
|
|
|
|
def _RunAndVerifyBackpropFilterExplicitPadding(self,
|
|
input_sizes,
|
|
filter_sizes,
|
|
output_sizes,
|
|
strides,
|
|
padding,
|
|
data_format,
|
|
use_gpu,
|
|
dilations=(1, 1),
|
|
err=1e-5):
|
|
if use_gpu and not test.is_gpu_available(cuda_only=True):
|
|
return
|
|
if not use_gpu and dilations != (1, 1):
|
|
return # Non-default dilations is currently not supported on the CPU.
|
|
|
|
x0 = self._CreateNumpyTensor(input_sizes)
|
|
x2 = self._CreateNumpyTensor(output_sizes)
|
|
dilations = list(dilations)
|
|
|
|
x0 = np.pad(x0, [(0, 0)] + padding + [(0, 0)], "constant")
|
|
c = nn_ops.conv2d_backprop_filter(
|
|
x0,
|
|
filter_sizes,
|
|
x2,
|
|
strides=[1] + strides + [1],
|
|
padding="VALID",
|
|
dilations=[1] + dilations + [1])
|
|
expected = list(self.evaluate(array_ops.reshape(c, [-1])))
|
|
self._RunAndVerifyBackpropFilter(
|
|
input_sizes,
|
|
filter_sizes,
|
|
output_sizes,
|
|
strides,
|
|
padding,
|
|
expected,
|
|
data_format,
|
|
use_gpu=use_gpu,
|
|
dilations=dilations,
|
|
err=err)
|
|
|
|
@test_util.run_in_graph_and_eager_modes()
|
|
def testConv2D2x2Depth1Padding0x0BackpropFilter(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropFilterExplicitPadding(
|
|
input_sizes=[1, 2, 3, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
output_sizes=[1, 1, 2, 1],
|
|
strides=[1, 1],
|
|
padding=[[0, 0], [0, 0]],
|
|
data_format=data_format, use_gpu=use_gpu)
|
|
|
|
self._RunAndVerifyBackpropFilterExplicitPadding(
|
|
input_sizes=[1, 3, 4, 2],
|
|
filter_sizes=[2, 2, 2, 3],
|
|
output_sizes=[1, 1, 2, 3],
|
|
strides=[2, 2],
|
|
padding=[[0, 0], [0, 0]],
|
|
data_format=data_format, use_gpu=use_gpu)
|
|
|
|
@test_util.run_in_graph_and_eager_modes()
|
|
def testConv2D2x2Depth1Padding1x1BackpropFilter(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropFilterExplicitPadding(
|
|
input_sizes=[1, 2, 3, 1],
|
|
filter_sizes=[2, 2, 1, 2],
|
|
output_sizes=[1, 3, 4, 2],
|
|
strides=[1, 1],
|
|
padding=[[1, 1], [1, 1]],
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
err=5e-5)
|
|
|
|
self._RunAndVerifyBackpropFilterExplicitPadding(
|
|
input_sizes=[1, 2, 3, 2],
|
|
filter_sizes=[1, 1, 2, 1],
|
|
output_sizes=[1, 4, 3, 1],
|
|
strides=[1, 2],
|
|
padding=[[1, 1], [1, 1]],
|
|
use_gpu=use_gpu,
|
|
data_format=data_format)
|
|
|
|
self._RunAndVerifyBackpropFilterExplicitPadding(
|
|
input_sizes=[1, 4, 3, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
output_sizes=[1, 4, 2, 1],
|
|
strides=[1, 2],
|
|
padding=[[1, 1], [1, 1]],
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
dilations=[2, 2])
|
|
|
|
@test_util.run_in_graph_and_eager_modes()
|
|
def testConv2D2x2Depth1Padding2x2BackpropFilter(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropFilterExplicitPadding(
|
|
input_sizes=[2, 3, 1, 1],
|
|
filter_sizes=[2, 1, 1, 1],
|
|
output_sizes=[2, 2, 5, 1],
|
|
strides=[3, 1],
|
|
padding=[[2, 2], [2, 2]],
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
self._RunAndVerifyBackpropFilterExplicitPadding(
|
|
input_sizes=[1, 3, 6, 1],
|
|
filter_sizes=[3, 2, 1, 1],
|
|
output_sizes=[1, 3, 4, 1],
|
|
strides=[1, 2],
|
|
padding=[[2, 2], [2, 2]],
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
dilations=[2, 3])
|
|
|
|
@test_util.run_in_graph_and_eager_modes()
|
|
def testConv2D2x2Depth1Padding_1_8_4_1_BackpropFilter(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropFilterExplicitPadding(
|
|
input_sizes=[1, 2, 3, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
output_sizes=[1, 10, 8, 1],
|
|
strides=[1, 1],
|
|
padding=[[1, 8], [4, 2]],
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
err=1e-4)
|
|
|
|
self._RunAndVerifyBackpropFilterExplicitPadding(
|
|
input_sizes=[1, 5, 3, 1],
|
|
filter_sizes=[3, 2, 1, 1],
|
|
output_sizes=[1, 4, 8, 1],
|
|
strides=[3, 1],
|
|
padding=[[1, 8], [4, 2]],
|
|
use_gpu=use_gpu,
|
|
data_format=data_format)
|
|
|
|
@test_util.run_in_graph_and_eager_modes()
|
|
def testConv2D2x2Depth1Padding_5_0_2_2_BackpropFilter(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self._RunAndVerifyBackpropFilterExplicitPadding(
|
|
input_sizes=[1, 3, 3, 1],
|
|
filter_sizes=[2, 1, 1, 1],
|
|
output_sizes=[1, 7, 7, 1],
|
|
strides=[1, 1],
|
|
padding=[[5, 0], [2, 2]],
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
err=1e-4)
|
|
|
|
self._RunAndVerifyBackpropFilterExplicitPadding(
|
|
input_sizes=[1, 4, 2, 1],
|
|
filter_sizes=[3, 3, 1, 1],
|
|
output_sizes=[1, 5, 2, 1],
|
|
strides=[1, 2],
|
|
padding=[[5, 0], [2, 2]],
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
dilations=[2, 1])
|
|
|
|
# Gradient checkers
|
|
def ConstructAndTestGradient(self,
|
|
batch,
|
|
input_rows,
|
|
input_cols,
|
|
filter_rows,
|
|
filter_cols,
|
|
in_depth,
|
|
out_depth,
|
|
stride_rows,
|
|
stride_cols,
|
|
padding,
|
|
test_input,
|
|
data_format,
|
|
use_gpu,
|
|
num_groups=1,
|
|
max_err=0.003):
|
|
assert in_depth % num_groups == 0 and out_depth % num_groups == 0
|
|
input_shape = [batch, input_rows, input_cols, in_depth]
|
|
filter_shape = [filter_rows, filter_cols, in_depth // num_groups, out_depth]
|
|
# TODO(yangke): re-factor the computation of output shape.
|
|
if padding == "VALID":
|
|
output_rows = (input_rows - filter_rows + stride_rows) // stride_rows
|
|
output_cols = (input_cols - filter_cols + stride_cols) // stride_cols
|
|
elif padding == "SAME":
|
|
output_rows = (input_rows + stride_rows - 1) // stride_rows
|
|
output_cols = (input_cols + stride_cols - 1) // stride_cols
|
|
else:
|
|
self.assertIsInstance(padding, (list, tuple))
|
|
output_rows = (input_rows + padding[1][0] + padding[1][1] - filter_rows +
|
|
stride_rows) // stride_rows
|
|
output_cols = (input_cols + padding[2][0] + padding[2][1] - filter_cols +
|
|
stride_cols) // stride_cols
|
|
output_shape = [batch, output_rows, output_cols, out_depth]
|
|
input_size = 1
|
|
for x in input_shape:
|
|
input_size *= x
|
|
filter_size = 1
|
|
for x in filter_shape:
|
|
filter_size *= x
|
|
input_data = [x * 1.0 / input_size for x in range(0, input_size)]
|
|
filter_data = [x * 1.0 / filter_size for x in range(0, filter_size)]
|
|
# Conv2DGrad functions are not compiled for double due to
|
|
# a problem in the way Eigen's Conv2DGrad works for double.
|
|
# So we disable the DOUBLE path. We should re-enable this
|
|
# when double support returns for CPU and/or GPU.
|
|
for dtype in self._DtypesToTest(use_gpu=use_gpu):
|
|
with self.cached_session(use_gpu=use_gpu):
|
|
input_tensor = constant_op.constant(
|
|
input_data, shape=input_shape, dtype=dtype, name="input")
|
|
filter_tensor = constant_op.constant(
|
|
filter_data, shape=filter_shape, dtype=dtype, name="filter")
|
|
strides = [1, stride_rows, stride_cols, 1]
|
|
new_padding = padding
|
|
if data_format == "NCHW":
|
|
new_input_tensor = test_util.NHWCToNCHW(input_tensor)
|
|
strides = test_util.NHWCToNCHW(strides)
|
|
if isinstance(padding, (list, tuple)):
|
|
new_padding = test_util.NHWCToNCHW(padding)
|
|
else:
|
|
new_input_tensor = input_tensor
|
|
conv = nn_ops.conv2d(
|
|
new_input_tensor,
|
|
filter_tensor,
|
|
strides,
|
|
new_padding,
|
|
data_format=data_format,
|
|
name="conv")
|
|
if data_format == "NCHW":
|
|
conv = test_util.NCHWToNHWC(conv)
|
|
self.assertEqual(output_shape, conv.get_shape())
|
|
if test_input:
|
|
jacob_t, jacob_n = gradient_checker.compute_gradient(input_tensor,
|
|
input_shape,
|
|
conv,
|
|
output_shape)
|
|
else:
|
|
jacob_t, jacob_n = gradient_checker.compute_gradient(filter_tensor,
|
|
filter_shape,
|
|
conv,
|
|
output_shape)
|
|
if dtype == dtypes.float32:
|
|
reference_jacob_t = jacob_t
|
|
err = np.fabs(jacob_t - jacob_n).max()
|
|
else:
|
|
# Compare fp16 theoretical gradients to fp32 theoretical gradients,
|
|
# since fp16 numerical gradients are too imprecise.
|
|
err = np.fabs(jacob_t - reference_jacob_t).max()
|
|
|
|
tf_logging.debug("conv_2d gradient error = %s", err)
|
|
self.assertLess(err, max_err)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testInputGradientValidPaddingStrideOne(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=2,
|
|
input_rows=5,
|
|
input_cols=4,
|
|
filter_rows=3,
|
|
filter_cols=3,
|
|
in_depth=2,
|
|
out_depth=3,
|
|
stride_rows=1,
|
|
stride_cols=1,
|
|
padding="VALID",
|
|
test_input=True,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testFilterGradientValidPaddingStrideOne(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=4,
|
|
input_rows=6,
|
|
input_cols=5,
|
|
filter_rows=2,
|
|
filter_cols=2,
|
|
in_depth=2,
|
|
out_depth=3,
|
|
stride_rows=1,
|
|
stride_cols=1,
|
|
padding="VALID",
|
|
test_input=False,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testInputGradientValidPaddingStrideTwo(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=2,
|
|
input_rows=4,
|
|
input_cols=5,
|
|
filter_rows=3,
|
|
filter_cols=3,
|
|
in_depth=2,
|
|
out_depth=3,
|
|
stride_rows=2,
|
|
stride_cols=2,
|
|
padding="VALID",
|
|
test_input=True,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testFilterGradientValidPaddingStrideTwo(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=4,
|
|
input_rows=6,
|
|
input_cols=5,
|
|
filter_rows=2,
|
|
filter_cols=2,
|
|
in_depth=2,
|
|
out_depth=3,
|
|
stride_rows=2,
|
|
stride_cols=2,
|
|
padding="VALID",
|
|
test_input=False,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testInputGradientValidPaddingStrideThree(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=2,
|
|
input_rows=7,
|
|
input_cols=6,
|
|
filter_rows=3,
|
|
filter_cols=3,
|
|
in_depth=4,
|
|
out_depth=5,
|
|
stride_rows=3,
|
|
stride_cols=3,
|
|
padding="VALID",
|
|
test_input=True,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testFilterGradientValidPaddingStrideThree(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=2,
|
|
input_rows=8,
|
|
input_cols=7,
|
|
filter_rows=4,
|
|
filter_cols=4,
|
|
in_depth=2,
|
|
out_depth=3,
|
|
stride_rows=3,
|
|
stride_cols=3,
|
|
padding="VALID",
|
|
test_input=False,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testInputGradientSamePaddingStrideOne(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=2,
|
|
input_rows=7,
|
|
input_cols=6,
|
|
filter_rows=3,
|
|
filter_cols=3,
|
|
in_depth=2,
|
|
out_depth=3,
|
|
stride_rows=1,
|
|
stride_cols=1,
|
|
padding="SAME",
|
|
test_input=True,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testFilterGradientSamePaddingStrideOne(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=4,
|
|
input_rows=6,
|
|
input_cols=5,
|
|
filter_rows=2,
|
|
filter_cols=2,
|
|
in_depth=2,
|
|
out_depth=3,
|
|
stride_rows=1,
|
|
stride_cols=1,
|
|
padding="SAME",
|
|
test_input=False,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testInputGradientSamePaddingStrideTwo(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=2,
|
|
input_rows=5,
|
|
input_cols=4,
|
|
filter_rows=3,
|
|
filter_cols=3,
|
|
in_depth=3,
|
|
out_depth=3,
|
|
stride_rows=2,
|
|
stride_cols=2,
|
|
padding="SAME",
|
|
test_input=True,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testFilterGradientSamePaddingStrideTwo(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=4,
|
|
input_rows=6,
|
|
input_cols=5,
|
|
filter_rows=2,
|
|
filter_cols=2,
|
|
in_depth=2,
|
|
out_depth=3,
|
|
stride_rows=2,
|
|
stride_cols=2,
|
|
padding="SAME",
|
|
test_input=False,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testInputGradientSamePaddingStrideThree(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=2,
|
|
input_rows=7,
|
|
input_cols=6,
|
|
filter_rows=3,
|
|
filter_cols=3,
|
|
in_depth=4,
|
|
out_depth=5,
|
|
stride_rows=3,
|
|
stride_cols=3,
|
|
padding="SAME",
|
|
test_input=True,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testFilterGradientSamePaddingStrideThree(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=2,
|
|
input_rows=8,
|
|
input_cols=7,
|
|
filter_rows=4,
|
|
filter_cols=4,
|
|
in_depth=2,
|
|
out_depth=3,
|
|
stride_rows=3,
|
|
stride_cols=3,
|
|
padding="SAME",
|
|
test_input=False,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testFilterGradientSamePaddingStride2x1(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=2,
|
|
input_rows=8,
|
|
input_cols=7,
|
|
filter_rows=4,
|
|
filter_cols=4,
|
|
in_depth=2,
|
|
out_depth=3,
|
|
stride_rows=2,
|
|
stride_cols=1,
|
|
padding="SAME",
|
|
test_input=False,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testInputGradientKernelSizeMatchesInputSize(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=2,
|
|
input_rows=4,
|
|
input_cols=3,
|
|
filter_rows=4,
|
|
filter_cols=3,
|
|
in_depth=2,
|
|
out_depth=3,
|
|
stride_rows=1,
|
|
stride_cols=1,
|
|
padding="VALID",
|
|
test_input=True,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testFilterGradientKernelSizeMatchesInputSize(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=2,
|
|
input_rows=4,
|
|
input_cols=3,
|
|
filter_rows=4,
|
|
filter_cols=3,
|
|
in_depth=2,
|
|
out_depth=3,
|
|
stride_rows=1,
|
|
stride_cols=1,
|
|
padding="VALID",
|
|
test_input=False,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testInputGradient1x1PaddingStrideOne(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=2,
|
|
input_rows=5,
|
|
input_cols=4,
|
|
filter_rows=3,
|
|
filter_cols=3,
|
|
in_depth=2,
|
|
out_depth=3,
|
|
stride_rows=1,
|
|
stride_cols=1,
|
|
padding=[[0, 0], [1, 1], [1, 1], [0, 0]],
|
|
test_input=True,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
max_err=0.0025)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testFilterGradient1x1PaddingStrideOne(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=2,
|
|
input_rows=5,
|
|
input_cols=4,
|
|
filter_rows=3,
|
|
filter_cols=3,
|
|
in_depth=2,
|
|
out_depth=3,
|
|
stride_rows=1,
|
|
stride_cols=1,
|
|
padding=[[0, 0], [1, 1], [1, 1], [0, 0]],
|
|
test_input=False,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testInputGradient1x1PaddingStrideTwo(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=2,
|
|
input_rows=4,
|
|
input_cols=5,
|
|
filter_rows=3,
|
|
filter_cols=3,
|
|
in_depth=2,
|
|
out_depth=3,
|
|
stride_rows=2,
|
|
stride_cols=2,
|
|
padding=[[0, 0], [1, 1], [1, 1], [0, 0]],
|
|
test_input=True,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testFilterGradient1x1PaddingStrideTwo(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=2,
|
|
input_rows=4,
|
|
input_cols=5,
|
|
filter_rows=3,
|
|
filter_cols=3,
|
|
in_depth=2,
|
|
out_depth=3,
|
|
stride_rows=2,
|
|
stride_cols=2,
|
|
padding=[[0, 0], [1, 1], [1, 1], [0, 0]],
|
|
test_input=False,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testInputGradient2x2PaddingStrideOne(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=2,
|
|
input_rows=5,
|
|
input_cols=4,
|
|
filter_rows=3,
|
|
filter_cols=3,
|
|
in_depth=2,
|
|
out_depth=3,
|
|
stride_rows=1,
|
|
stride_cols=1,
|
|
padding=[[0, 0], [2, 2], [2, 2], [0, 0]],
|
|
test_input=True,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
max_err=0.003)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testFilterGradient2x2PaddingStrideOne(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=2,
|
|
input_rows=5,
|
|
input_cols=4,
|
|
filter_rows=3,
|
|
filter_cols=3,
|
|
in_depth=2,
|
|
out_depth=3,
|
|
stride_rows=1,
|
|
stride_cols=1,
|
|
padding=[[0, 0], [2, 2], [2, 2], [0, 0]],
|
|
test_input=False,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu,
|
|
max_err=0.003)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testInputGradient1_2_3_4PaddingStride3x2(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=2,
|
|
input_rows=8,
|
|
input_cols=5,
|
|
filter_rows=4,
|
|
filter_cols=2,
|
|
in_depth=3,
|
|
out_depth=2,
|
|
stride_rows=3,
|
|
stride_cols=2,
|
|
padding=[[0, 0], [1, 2], [3, 4], [0, 0]],
|
|
test_input=True,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testFilterGradient1_2_3_4PaddingStride3x2(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=2,
|
|
input_rows=8,
|
|
input_cols=5,
|
|
filter_rows=4,
|
|
filter_cols=2,
|
|
in_depth=3,
|
|
out_depth=2,
|
|
stride_rows=3,
|
|
stride_cols=2,
|
|
padding=[[0, 0], [1, 2], [3, 4], [0, 0]],
|
|
test_input=False,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testInputGradient4_3_2_1PaddingStride2x1(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=3,
|
|
input_rows=5,
|
|
input_cols=7,
|
|
filter_rows=3,
|
|
filter_cols=2,
|
|
in_depth=1,
|
|
out_depth=2,
|
|
stride_rows=2,
|
|
stride_cols=1,
|
|
padding=[[0, 0], [4, 3], [2, 1], [0, 0]],
|
|
test_input=True,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testFilterGradient4_3_2_1PaddingStride2x1(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=3,
|
|
input_rows=5,
|
|
input_cols=7,
|
|
filter_rows=3,
|
|
filter_cols=2,
|
|
in_depth=1,
|
|
out_depth=2,
|
|
stride_rows=2,
|
|
stride_cols=1,
|
|
padding=[[0, 0], [4, 3], [2, 1], [0, 0]],
|
|
test_input=False,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testInputGradient0_0_0_5PaddingStride1x2(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=2,
|
|
input_rows=6,
|
|
input_cols=7,
|
|
filter_rows=3,
|
|
filter_cols=4,
|
|
in_depth=3,
|
|
out_depth=2,
|
|
stride_rows=1,
|
|
stride_cols=2,
|
|
padding=[[0, 0], [0, 0], [0, 5], [0, 0]],
|
|
test_input=True,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testFilterGradient0_0_0_5PaddingStride1x2(self):
|
|
for (data_format, use_gpu) in GetTestConfigs():
|
|
self.ConstructAndTestGradient(
|
|
batch=2,
|
|
input_rows=6,
|
|
input_cols=7,
|
|
filter_rows=3,
|
|
filter_cols=4,
|
|
in_depth=3,
|
|
out_depth=2,
|
|
stride_rows=1,
|
|
stride_cols=2,
|
|
padding=[[0, 0], [0, 0], [0, 5], [0, 0]],
|
|
test_input=False,
|
|
data_format=data_format,
|
|
use_gpu=use_gpu)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testShapeFunctionEdgeCases(self):
|
|
# All shapes unknown.
|
|
c1 = nn_ops.conv2d(
|
|
array_ops.placeholder(dtypes.float32),
|
|
array_ops.placeholder(dtypes.float32),
|
|
strides=[1, 1, 1, 1],
|
|
padding="SAME")
|
|
self.assertEqual([None, None, None, None], c1.get_shape().as_list())
|
|
|
|
# Incorrect input shape.
|
|
with self.assertRaises(ValueError):
|
|
nn_ops.conv2d(
|
|
array_ops.placeholder(
|
|
dtypes.float32, shape=[1, 3]),
|
|
array_ops.placeholder(dtypes.float32),
|
|
strides=[1, 1, 1, 1],
|
|
padding="SAME")
|
|
|
|
# Incorrect filter shape.
|
|
with self.assertRaises(ValueError):
|
|
nn_ops.conv2d(
|
|
array_ops.placeholder(dtypes.float32),
|
|
array_ops.placeholder(
|
|
dtypes.float32, shape=[1, 3]),
|
|
strides=[1, 1, 1, 1],
|
|
padding="SAME")
|
|
|
|
# Depth mismatch.
|
|
with self.assertRaises(ValueError):
|
|
nn_ops.conv2d(
|
|
array_ops.placeholder(
|
|
dtypes.float32, shape=[32, 20, 20, 3]),
|
|
array_ops.placeholder(
|
|
dtypes.float32, shape=[4, 4, 2, 2]),
|
|
strides=[1, 1, 1, 1],
|
|
padding="SAME")
|
|
|
|
# Input depth divisible by filter depth (group convolution).
|
|
# No exceptions should appear.
|
|
nn_ops.conv2d(
|
|
array_ops.placeholder(dtypes.float32, shape=[32, 20, 20, 8]),
|
|
array_ops.placeholder(dtypes.float32, shape=[4, 4, 2, 16]),
|
|
strides=[1, 1, 1, 1],
|
|
padding="SAME")
|
|
|
|
# Negative padding.
|
|
with self.assertRaises(ValueError):
|
|
nn_ops.conv2d(
|
|
array_ops.placeholder(dtypes.float32),
|
|
array_ops.placeholder(dtypes.float32),
|
|
strides=[1, 1, 1, 1],
|
|
padding=[[0, 0], [0, -1], [1, 2], [0, 0]])
|
|
|
|
# Nonzero padding in nonspatial dimension.
|
|
with self.assertRaises(ValueError):
|
|
nn_ops.conv2d(
|
|
array_ops.placeholder(dtypes.float32),
|
|
array_ops.placeholder(dtypes.float32),
|
|
strides=[1, 1, 1, 1],
|
|
padding=[[1, 0], [0, 0], [0, 0], [0, 0]])
|
|
|
|
# Nonzero NCHW padding in nonspatial dimension.
|
|
with self.assertRaises(ValueError):
|
|
nn_ops.conv2d(
|
|
array_ops.placeholder(dtypes.float32),
|
|
array_ops.placeholder(dtypes.float32),
|
|
strides=[1, 1, 1, 1],
|
|
padding=[[0, 0], [0, 1], [0, 0], [0, 0]],
|
|
data_format="NCHW")
|
|
|
|
# Wrong amount of padding
|
|
with self.assertRaises(ValueError):
|
|
nn_ops.conv2d(
|
|
array_ops.placeholder(dtypes.float32),
|
|
array_ops.placeholder(dtypes.float32),
|
|
strides=[1, 1, 1, 1],
|
|
padding=[[0, 0], [0, 0], [0, 0]])
|
|
|
|
# Only specify one padding amount per dimension
|
|
with self.assertRaises(ValueError):
|
|
nn_ops.conv2d(
|
|
array_ops.placeholder(dtypes.float32),
|
|
array_ops.placeholder(dtypes.float32),
|
|
strides=[1, 1, 1, 1],
|
|
padding=[[0], [0], [0], [0]])
|
|
|
|
# Explicit padding elements are not lists
|
|
with self.assertRaises(ValueError):
|
|
nn_ops.conv2d(
|
|
array_ops.placeholder(dtypes.float32),
|
|
array_ops.placeholder(dtypes.float32),
|
|
strides=[1, 1, 1, 1],
|
|
padding=[0, 0, 0, 0])
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
@test_util.disable_xla("b/123337890") # Error messages differ
|
|
def testOpEdgeCases(self):
|
|
with self.cached_session() as sess:
|
|
# Illegal strides.
|
|
with self.assertRaisesRegexp(errors_impl.InvalidArgumentError,
|
|
"strides in the batch and depth"):
|
|
sess.run(
|
|
nn_ops.conv2d(
|
|
array_ops.placeholder(dtypes.float32),
|
|
array_ops.placeholder(dtypes.float32),
|
|
strides=[2, 1, 1, 1],
|
|
padding="SAME"))
|
|
with self.assertRaisesRegexp(errors_impl.InvalidArgumentError,
|
|
"strides in the batch and depth"):
|
|
sess.run(
|
|
nn_ops.conv2d(
|
|
array_ops.placeholder(dtypes.float32),
|
|
array_ops.placeholder(dtypes.float32),
|
|
strides=[1, 1, 1, 2],
|
|
padding="SAME"))
|
|
|
|
# Filter larger than input.
|
|
with self.assertRaisesRegexp(ValueError, "Negative dimension size"):
|
|
sess.run(
|
|
nn_ops.conv2d(
|
|
array_ops.placeholder(
|
|
dtypes.float32, shape=[32, 20, 20, 3]),
|
|
array_ops.placeholder(
|
|
dtypes.float32, shape=[20, 21, 3, 2]),
|
|
strides=[1, 1, 1, 1],
|
|
padding="VALID"))
|
|
with self.assertRaisesRegexp(ValueError, "Negative dimension size"):
|
|
sess.run(
|
|
nn_ops.conv2d(
|
|
array_ops.placeholder(
|
|
dtypes.float32, shape=[32, 20, 20, 3]),
|
|
array_ops.placeholder(
|
|
dtypes.float32, shape=[21, 20, 3, 2]),
|
|
strides=[1, 1, 1, 1],
|
|
padding="VALID"))
|
|
|
|
# Filter larger than input + padding.
|
|
with self.assertRaisesRegexp(ValueError, "Negative dimension size"):
|
|
sess.run(
|
|
nn_ops.conv2d(
|
|
array_ops.placeholder(dtypes.float32, shape=[32, 20, 20, 3]),
|
|
array_ops.placeholder(dtypes.float32, shape=[24, 25, 3, 2]),
|
|
strides=[1, 1, 1, 1],
|
|
padding=[[0, 0], [2, 2], [2, 2], [0, 0]]))
|
|
|
|
# Negative padding during backprop.
|
|
with self.assertRaisesRegexp(errors_impl.InvalidArgumentError,
|
|
"nonnegative"):
|
|
sess.run(
|
|
nn_ops.conv2d_backprop_input([32, 20, 20, 3],
|
|
array_ops.placeholder(
|
|
dtypes.float32,
|
|
shape=[18, 18, 3, 2]),
|
|
array_ops.placeholder(
|
|
dtypes.float32,
|
|
shape=[32, 3, 2, 2]),
|
|
strides=[1, 1, 1, 1],
|
|
padding=[[0, 0], [-1, 0], [0, 0],
|
|
[0, 0]]))
|
|
with self.assertRaisesRegexp(errors_impl.InvalidArgumentError,
|
|
"nonnegative"):
|
|
sess.run(
|
|
nn_ops.conv2d_backprop_filter(
|
|
array_ops.placeholder(dtypes.float32, shape=[32, 20, 20, 3]),
|
|
[18, 18, 3, 2],
|
|
array_ops.placeholder(dtypes.float32, shape=[32, 3, 2, 2]),
|
|
strides=[1, 1, 1, 1],
|
|
padding=[[0, 0], [-1, 0], [0, 0], [0, 0]]))
|
|
|
|
|
|
class DepthwiseConv2DTest(test.TestCase):
|
|
|
|
def _VerifyValues(self, tensor_in_sizes, filter_in_sizes, stride, padding,
|
|
expected):
|
|
"""Verifies the output values of the convolution function.
|
|
|
|
Args:
|
|
tensor_in_sizes: Input tensor dimensions in
|
|
[batch, input_rows, input_cols, input_depth].
|
|
filter_in_sizes: Filter tensor dimensions in
|
|
[filter_rows, filter_cols, input_depth, depth_multiplier].
|
|
stride: Stride.
|
|
padding: Padding type.
|
|
expected: An array containing the expected operation outputs.
|
|
"""
|
|
total_size_1 = 1
|
|
total_size_2 = 1
|
|
for s in tensor_in_sizes:
|
|
total_size_1 *= s
|
|
for s in filter_in_sizes:
|
|
total_size_2 *= s
|
|
# Initializes the input tensor with array containing incrementing
|
|
# numbers from 1.
|
|
x1 = [f * 1.0 for f in range(1, total_size_1 + 1)]
|
|
x2 = [f * 1.0 for f in range(1, total_size_2 + 1)]
|
|
with self.cached_session() as sess:
|
|
t1 = constant_op.constant(x1, shape=tensor_in_sizes)
|
|
t1.set_shape(tensor_in_sizes)
|
|
t2 = constant_op.constant(x2, shape=filter_in_sizes)
|
|
conv = nn_impl.depthwise_conv2d(
|
|
t1, t2, strides=[1, stride, stride, 1], padding=padding)
|
|
value = self.evaluate(conv)
|
|
tf_logging.debug("value = %s", value)
|
|
self.assertArrayNear(expected, np.ravel(value), 1e-5)
|
|
self.assertShapeEqual(value, conv)
|
|
|
|
def testConv2D2x2Filter(self):
|
|
# The inputs look like this (it's a 3 x 2 matrix, each of depth 2):
|
|
#
|
|
# [ (1.0, 2.0), (3.0, 4.0), ( 5.0, 6.0) ]
|
|
# [ (7.0, 8.0), (9.0, 10.0), (11.0, 12.0) ]
|
|
# We can view this as two inputs
|
|
#
|
|
# input depth 0:
|
|
#
|
|
# [ 1.0, 3.0, 5.0 ]
|
|
# [ 7.0, 9.0, 11.0 ]
|
|
#
|
|
# input depth 1:
|
|
#
|
|
# [ 2.0, 4.0, 6.0 ]
|
|
# [ 8.0, 10.0, 12.0 ]
|
|
#
|
|
# The filter looks like this (it has two 2 x 2 patches, each generating 2
|
|
# depths):
|
|
#
|
|
# filter #0:
|
|
#
|
|
# [ (1.0, 3.0), ( 5.0, 7.0)]
|
|
# [ (9.0, 11.0), (13.0, 15.0)]
|
|
#
|
|
# filter #1:
|
|
#
|
|
# [ ( 2.0, 4.0), ( 6.0, 8.0)]
|
|
# [ (10.0, 12.0), (14.0, 16.0)]
|
|
#
|
|
# So the outputs are:
|
|
#
|
|
# (position 0, 0: in_depth 0, output_depth 0 -- using filter #0)
|
|
# 1.0 * 1.0 + 7.0 * 9.0 + 3.0 * 5.0 + 9.0 * 13.0 = 196
|
|
# (position 0, 0: in_depth 0, output_depth 1 -- using filter #1)
|
|
# 1.0 * 2.0 + 7.0 * 10.0 + 3.0 * 6.0 + 9.0 * 14.0 = 216
|
|
# (position 0, 0: in_depth 1, output_depth 2 -- using filter #0)
|
|
# 2.0 * 3.0 + 8.0 * 11.0 + 4.0 * 7.0 + 10.0 * 15.0 = 272
|
|
# (position 0, 0: in_depth 1, output_depth 3 -- using filter #1)
|
|
# 2.0 * 4.0 + 8.0 * 12.0 + 4.0 * 8.0 + 10.0 * 16.0 = 296
|
|
#
|
|
# (position 1, 0: in_depth 0, output_depth 0 -- using filter #0)
|
|
# 3.0 * 1.0 + 9.0 * 9.0 + 5.0 * 5.0 + 11.0 * 13.0 = 252
|
|
# (position 1, 0: in_depth 0, output_depth 1 -- using filter #1)
|
|
# 3.0 * 2.0 + 9.0 * 10.0 + 5.0 * 6.0 + 11.0 * 14.0 = 280
|
|
# (position 1, 0: in_depth 1, output_depth 2 -- using filter #0)
|
|
# 4.0 * 3.0 + 10.0 * 11.0 + 6.0 * 7.0 + 12.0 * 15.0 = 344
|
|
# (position 1, 0: in_depth 1, output_depth 3 -- using filter #1)
|
|
# 4.0 * 4.0 + 10.0 * 12.0 + 6.0 * 8.0 + 12.0 * 16.0 = 376
|
|
expected_output = [196, 216, 272, 296, 252, 280, 344, 376]
|
|
self._VerifyValues(
|
|
tensor_in_sizes=[1, 2, 3, 2],
|
|
filter_in_sizes=[2, 2, 2, 2],
|
|
stride=1,
|
|
padding="VALID",
|
|
expected=expected_output)
|
|
|
|
|
|
class SeparableConv2DTest(test.TestCase):
|
|
|
|
def _InitValues(self, sizes):
|
|
"""Initializes values for input tensors.
|
|
|
|
Args:
|
|
sizes: Tensor dimensions.
|
|
|
|
Returns:
|
|
Tensor initialized to values.
|
|
"""
|
|
total_size = 1
|
|
for s in sizes:
|
|
total_size *= s
|
|
x = [f * 0.5 for f in range(1, total_size + 1)]
|
|
return constant_op.constant(x, shape=sizes)
|
|
|
|
def _VerifyValues(self,
|
|
tensor_in_sizes,
|
|
depthwise_filter_in_sizes,
|
|
pointwise_filter_in_sizes,
|
|
stride,
|
|
padding,
|
|
expected,
|
|
data_format="NHWC"):
|
|
"""Verifies the output values of the separable convolution function.
|
|
|
|
Args:
|
|
tensor_in_sizes: Input tensor dimensions.
|
|
depthwise_filter_in_sizes: Depthwise filter tensor dimensions.
|
|
pointwise_filter_in_sizes: Pointwise filter tensor dimensions.
|
|
stride: Stride.
|
|
padding: Padding type.
|
|
expected: An array containing the expected operation outputs.
|
|
data_format: string data format for input tensor.
|
|
"""
|
|
with self.cached_session(use_gpu=True) as sess:
|
|
t1 = self._InitValues(tensor_in_sizes)
|
|
f1 = self._InitValues(depthwise_filter_in_sizes)
|
|
f1.set_shape(depthwise_filter_in_sizes)
|
|
f2 = self._InitValues(pointwise_filter_in_sizes)
|
|
|
|
real_t1 = t1
|
|
strides = [1, stride, stride, 1]
|
|
if data_format == "NCHW":
|
|
real_t1 = array_ops.transpose(t1, [0, 3, 1, 2])
|
|
strides = [1, 1, stride, stride]
|
|
if isinstance(padding, list):
|
|
padding = [padding[0], padding[3], padding[1], padding[2]]
|
|
|
|
conv = nn_impl.separable_conv2d(
|
|
real_t1,
|
|
f1,
|
|
f2,
|
|
strides=strides,
|
|
padding=padding,
|
|
data_format=data_format)
|
|
|
|
if data_format == "NCHW":
|
|
conv = array_ops.transpose(conv, [0, 2, 3, 1])
|
|
|
|
value = self.evaluate(conv)
|
|
tf_logging.debug("value = %s", value)
|
|
self.assertArrayNear(expected, np.ravel(value), 2e-3)
|
|
self.assertShapeEqual(value, conv)
|
|
|
|
def _testSeparableConv2D(self, data_format):
|
|
# The output is the result of two convolutions:
|
|
# First with tensor_in[1, 4, 4, 2] * filter1[2, 2, 2, 3].
|
|
# Second with intermediate_out[1, 4, 4, 6] * filter2[1, 1, 6, 7].
|
|
# Complexity is O(2*3*2*2 + 6*7*1*1) as opposed to O(2*7*2*2).
|
|
expected_output = [
|
|
6644.5, 6971.5, 7298.5, 7625.5, 7952.5, 8279.5, 8606.5, 8154.5, 8556.5,
|
|
8958.5, 9360.5, 9762.5, 10164.5, 10566.5, 9664.5, 10141.5, 10618.5,
|
|
11095.5, 11572.5, 12049.5, 12526.5, 4145.5, 4346.5, 4547.5, 4748.5,
|
|
4949.5, 5150.5, 5351.5, 12684.5, 13311.5, 13938.5, 14565.5, 15192.5,
|
|
15819.5, 16446.5, 14194.5, 14896.5, 15598.5, 16300.5, 17002.5, 17704.5,
|
|
18406.5, 15704.5, 16481.5, 17258.5, 18035.5, 18812.5, 19589.5, 20366.5,
|
|
6499.5, 6814.5, 7129.5, 7444.5, 7759.5, 8074.5, 8389.5, 18724.5,
|
|
19651.5, 20578.5, 21505.5, 22432.5, 23359.5, 24286.5, 20234.5, 21236.5,
|
|
22238.5, 23240.5, 24242.5, 25244.5, 26246.5, 21744.5, 22821.5, 23898.5,
|
|
24975.5, 26052.5, 27129.5, 28206.5, 8853.5, 9282.5, 9711.5, 10140.5,
|
|
10569.5, 10998.5, 11427.5, 5746.75, 6010.75, 6274.75, 6538.75, 6802.75,
|
|
7066.75, 7330.75, 6168.75, 6452.25, 6735.75, 7019.25, 7302.75, 7586.25,
|
|
7869.75, 6590.75, 6893.75, 7196.75, 7499.75, 7802.75, 8105.75, 8408.75,
|
|
2036.25, 2119.5, 2202.75, 2286.0, 2369.25, 2452.5, 2535.75
|
|
]
|
|
|
|
self._VerifyValues(
|
|
tensor_in_sizes=[1, 4, 4, 2],
|
|
depthwise_filter_in_sizes=[2, 2, 2, 3],
|
|
pointwise_filter_in_sizes=[1, 1, 6, 7],
|
|
stride=1,
|
|
padding="SAME",
|
|
expected=expected_output,
|
|
data_format=data_format)
|
|
|
|
def testSeparableConv2D(self):
|
|
self._testSeparableConv2D("NHWC")
|
|
|
|
def disabledtestSeparableConv2DNCHW(self):
|
|
if not test.is_gpu_available():
|
|
return
|
|
self._testSeparableConv2D("NCHW")
|
|
|
|
def _testSeparableConv2DEqualInputOutputDepth(self, data_format):
|
|
# The output is the result of two convolutions:
|
|
# First with tensor_in[1, 4, 4, 2] * filter1[2, 2, 3, 3].
|
|
# Second with intermediate_out[1, 4, 4, 6] * filter2[1, 1, 6, 6].
|
|
# Complexity is O(2*3*2*2 + 6*6*1*1) as opposed to O(2*6*2*2).
|
|
expected_output = [
|
|
5742.0, 6069.0, 6396.0, 6723.0, 7050.0, 7377.0, 7047.0, 7449.0, 7851.0,
|
|
8253.0, 8655.0, 9057.0, 8352.0, 8829.0, 9306.0, 9783.0, 10260.0,
|
|
10737.0, 3582.0, 3783.0, 3984.0, 4185.0, 4386.0, 4587.0, 10962.0,
|
|
11589.0, 12216.0, 12843.0, 13470.0, 14097.0, 12267.0, 12969.0, 13671.0,
|
|
14373.0, 15075.0, 15777.0, 13572.0, 14349.0, 15126.0, 15903.0, 16680.0,
|
|
17457.0, 5616.0, 5931.0, 6246.0, 6561.0, 6876.0, 7191.0, 16182.0,
|
|
17109.0, 18036.0, 18963.0, 19890.0, 20817.0, 17487.0, 18489.0, 19491.0,
|
|
20493.0, 21495.0, 22497.0, 18792.0, 19869.0, 20946.0, 22023.0, 23100.0,
|
|
24177.0, 7650.0, 8079.0, 8508.0, 8937.0, 9366.0, 9795.0, 4963.5, 5227.5,
|
|
5491.5, 5755.5, 6019.5, 6283.5, 5328.0, 5611.5, 5895.0, 6178.5, 6462.0,
|
|
6745.5, 5692.5, 5995.5, 6298.5, 6601.5, 6904.5, 7207.5, 1757.25, 1840.5,
|
|
1923.75, 2007.0, 2090.25, 2173.5
|
|
]
|
|
|
|
self._VerifyValues(
|
|
tensor_in_sizes=[1, 4, 4, 2],
|
|
depthwise_filter_in_sizes=[2, 2, 2, 3],
|
|
pointwise_filter_in_sizes=[1, 1, 6, 6],
|
|
stride=1,
|
|
padding="SAME",
|
|
expected=expected_output,
|
|
data_format=data_format)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testSeparableConv2DEqualInputOutputDepth(self):
|
|
self._testSeparableConv2DEqualInputOutputDepth("NHWC")
|
|
|
|
def testSeparableConv2DEqualInputOutputDepthNCHW(self):
|
|
if not test.is_gpu_available():
|
|
return
|
|
self._testSeparableConv2DEqualInputOutputDepth("NCHW")
|
|
|
|
def _testSeparableConv2dExplicitPadding(self, data_format):
|
|
tensor_in_sizes = [1, 4, 4, 2]
|
|
depthwise_filter_in_sizes = [2, 2, 2, 3]
|
|
pointwise_filter_in_sizes = [1, 1, 6, 7]
|
|
padding = [[0, 0], [1, 2], [3, 4], [0, 0]]
|
|
with self.cached_session(use_gpu=True):
|
|
# Compute the 'expected' values by manually padding before calling
|
|
# separable_conv2d
|
|
t1 = self._InitValues(tensor_in_sizes)
|
|
t1 = array_ops.pad(t1, padding)
|
|
f1 = self._InitValues(depthwise_filter_in_sizes)
|
|
f1.set_shape(depthwise_filter_in_sizes)
|
|
f2 = self._InitValues(pointwise_filter_in_sizes)
|
|
conv = nn_impl.separable_conv2d(
|
|
t1,
|
|
f1,
|
|
f2,
|
|
strides=[1, 1, 1, 1],
|
|
padding="VALID",
|
|
data_format="NHWC")
|
|
expected = self.evaluate(conv)
|
|
expected = np.ravel(expected)
|
|
self._VerifyValues(
|
|
tensor_in_sizes=tensor_in_sizes,
|
|
depthwise_filter_in_sizes=depthwise_filter_in_sizes,
|
|
pointwise_filter_in_sizes=pointwise_filter_in_sizes,
|
|
stride=1,
|
|
padding=padding,
|
|
expected=expected,
|
|
data_format=data_format)
|
|
|
|
def testSeparableConv2dExplicitPadding(self):
|
|
self._testSeparableConv2dExplicitPadding("NHWC")
|
|
|
|
def testSeparableConv2dExplicitPaddingNCHW(self):
|
|
if not test.is_gpu_available():
|
|
return
|
|
self._testSeparableConv2dExplicitPadding("NCHW")
|
|
|
|
|
|
class DeepConv2DTest(test.TestCase):
|
|
|
|
def _CompareFwdConv2D(self, tensor_in_sizes, filter_in_sizes, conv_strides,
|
|
padding):
|
|
"""Verifies that DeepConv2D and Conv2D produce the same values.
|
|
|
|
Args:
|
|
tensor_in_sizes: Input tensor dimensions in
|
|
[batch, input_rows, input_cols, input_depth].
|
|
filter_in_sizes: Filter tensor dimensions in
|
|
[kernel_rows, kernel_cols, input_depth, output_depth].
|
|
conv_strides: [row_stride, col_stride] for the convolution;
|
|
padding: Padding type.
|
|
"""
|
|
x1 = np.random.rand(*tensor_in_sizes).astype(np.float32)
|
|
x2 = np.random.rand(*filter_in_sizes).astype(np.float32)
|
|
|
|
with self.cached_session(use_gpu=False) as sess:
|
|
t1 = constant_op.constant(x1, shape=tensor_in_sizes)
|
|
t2 = constant_op.constant(x2, shape=filter_in_sizes)
|
|
strides = [1] + conv_strides + [1]
|
|
|
|
conv = nn_ops.conv2d(t1, t2, strides=strides, padding=padding)
|
|
|
|
os.environ["TF_USE_DEEP_CONV2D"] = "0"
|
|
values_expect = self.evaluate([conv])
|
|
|
|
os.environ["TF_USE_DEEP_CONV2D"] = "1"
|
|
values_test = self.evaluate([conv])
|
|
|
|
self.assertAllClose(values_expect, values_test, rtol=1e-5, atol=1e-5)
|
|
|
|
def _RunTestCases(self, conv_strides, padding):
|
|
input_sizes = [[5, 5, 5, 1248], [3, 17, 17, 192], [2, 35, 35, 288],
|
|
[2, 6, 8, 517], [2, 7, 4, 81], [3, 11, 3, 77]]
|
|
filter_sizes = [[3, 3, 1248, 128], [3, 3, 192, 192], [3, 3, 288, 384],
|
|
[3, 3, 517, 64], [3, 3, 81, 77], [3, 3, 77, 181]]
|
|
for input_shape, filter_shape in zip(input_sizes, filter_sizes):
|
|
self._CompareFwdConv2D(input_shape, filter_shape, conv_strides, padding)
|
|
|
|
def testConv2D3x3FilterStride1x1Valid(self):
|
|
self._RunTestCases([1, 1], "VALID")
|
|
|
|
def testConv2D3x3FilterStride1x1Same(self):
|
|
self._RunTestCases([1, 1], "SAME")
|
|
|
|
|
|
class Conv2DBenchmark(test.Benchmark):
|
|
|
|
def benchmarkGPUConvStackFirst(self):
|
|
# Benchmark the first iteration of a conv-net with many identical conv
|
|
# operations.
|
|
if not test.is_gpu_available():
|
|
return
|
|
|
|
with ops.Graph().as_default(), session_lib.Session() as session:
|
|
batch_size = 1
|
|
timesteps = 600
|
|
features = 1
|
|
|
|
inputs = random_ops.random_uniform(
|
|
[batch_size, 1, timesteps, features], seed=1234)
|
|
num_outputs_list = [512] * 40 + [1]
|
|
kernel_w = 3
|
|
x = inputs
|
|
for num_outputs in num_outputs_list:
|
|
x = convolutional.conv2d(x, num_outputs, [1, kernel_w])
|
|
outputs = x
|
|
|
|
variables.global_variables_initializer().run()
|
|
num_iterations = 4
|
|
for iter_index in xrange(num_iterations):
|
|
start = time.time()
|
|
session.run(outputs)
|
|
wall_time = time.time() - start
|
|
self.report_benchmark(
|
|
name="conv_stack_iter_%d" % iter_index, wall_time=wall_time)
|
|
tf_logging.info("conv_stack_iter_%d: %.4f" % (iter_index, wall_time))
|
|
|
|
def _bench_op(self, name, op, burn_iters, num_iters):
|
|
config = config_pb2.ConfigProto()
|
|
# Prevent Grappler from optimizing away the entire graph.
|
|
config.graph_options.rewrite_options.dependency_optimization = (
|
|
rewriter_config_pb2.RewriterConfig.OFF)
|
|
with session_lib.Session(config=config) as session:
|
|
variables.global_variables_initializer().run()
|
|
self.run_op_benchmark(
|
|
session, op, burn_iters=burn_iters, min_iters=num_iters, name=name)
|
|
|
|
def benchmarkExplicitVsManualPadding(self):
|
|
"""Compare performance of EXPLICIT padding and calling tf.pad.
|
|
|
|
A Conv2D op with EXPLICIT padding is benchmarked, and a tf.pad with the same
|
|
padding followed by an equivalent Conv2D op is benchmarked.
|
|
"""
|
|
if not test.is_gpu_available():
|
|
return
|
|
|
|
with ops.Graph().as_default():
|
|
burn_iters = 15
|
|
num_iters = 300
|
|
batch_size = 64
|
|
# The input and filter correspond to the first layer of Resnet50.
|
|
input = variables.Variable( # pylint: disable=redefined-builtin
|
|
random_ops.random_uniform([
|
|
batch_size,
|
|
3,
|
|
224,
|
|
224
|
|
]))
|
|
filter = variables.Variable(random_ops.random_uniform([7, 7, 3, 64])) # pylint: disable=redefined-builtin
|
|
strides = [1, 1, 2, 2]
|
|
padding = [(0, 0), (0, 0), (3, 3), (3, 3)]
|
|
output_explicit_pad = nn_ops.conv2d(
|
|
input, filter, strides, padding=padding, data_format="NCHW")
|
|
input_padded = array_ops.pad(input, padding)
|
|
output_manual_pad = nn_ops.conv2d(
|
|
input_padded, filter, strides, padding="VALID", data_format="NCHW")
|
|
# Benchmark just the forward pass.
|
|
self._bench_op("explicit_pad_forward", output_explicit_pad.op, burn_iters,
|
|
num_iters)
|
|
self._bench_op("manual_pad_forward", output_manual_pad.op, burn_iters,
|
|
num_iters)
|
|
|
|
# Benchmark both the forward and backwards passes.
|
|
input_grad_explicit_pad, filter_grad_explicit_pad = (
|
|
gradients_impl.gradients(output_explicit_pad, [input, filter]))
|
|
self._bench_op(
|
|
"explicit_pad_backward",
|
|
control_flow_ops.group(input_grad_explicit_pad,
|
|
filter_grad_explicit_pad), burn_iters,
|
|
num_iters)
|
|
input_grad_manual_pad, filter_grad_manual_pad = gradients_impl.gradients(
|
|
output_manual_pad, [input, filter])
|
|
self._bench_op(
|
|
"manual_pad_backward",
|
|
control_flow_ops.group(input_grad_manual_pad, filter_grad_manual_pad),
|
|
burn_iters, num_iters)
|
|
|
|
def benchmarkExplicitVsSamePaddingGraph(self):
|
|
"""Compare performance of EXPLICIT and SAME padding in graph mode.
|
|
|
|
A Conv2D op with SAME padding is benchmarked, and an equivalent Conv2D op
|
|
with explicit padding is benchmarked, where the padding is the same as in
|
|
the SAME case. The purpose is to ensure EXPLICIT padding is just as
|
|
efficient as the SAME case
|
|
"""
|
|
if not test.is_gpu_available():
|
|
return
|
|
|
|
with ops.Graph().as_default():
|
|
burn_iters = 15
|
|
num_convs = 20
|
|
num_iters = 50
|
|
batch_size = 64
|
|
# The input and filter correspond to a middle layer of Resnet50.
|
|
input = variables.Variable( # pylint: disable=redefined-builtin
|
|
random_ops.random_uniform([
|
|
batch_size,
|
|
256,
|
|
14,
|
|
14
|
|
]))
|
|
filter = variables.Variable(random_ops.random_uniform([3, 3, 256, 256])) # pylint: disable=redefined-builtin
|
|
strides = [1, 1, 1, 1]
|
|
padding = [(0, 0), (0, 0), (1, 1), (1, 1)]
|
|
output_explicit_pad = input
|
|
output_same_pad = input
|
|
|
|
for _ in range(num_convs):
|
|
output_explicit_pad = nn_ops.conv2d(
|
|
output_explicit_pad,
|
|
filter,
|
|
strides,
|
|
padding=padding,
|
|
data_format="NCHW")
|
|
output_same_pad = nn_ops.conv2d(
|
|
output_same_pad,
|
|
filter,
|
|
strides,
|
|
padding="SAME",
|
|
data_format="NCHW")
|
|
grad_explicit_pad, = gradients_impl.gradients(output_explicit_pad, filter)
|
|
grad_same_pad, = gradients_impl.gradients(output_same_pad, filter)
|
|
self._bench_op("graph_explicit_pad", grad_explicit_pad.op, burn_iters,
|
|
num_iters)
|
|
self._bench_op("graph_same_pad", grad_same_pad.op, burn_iters, num_iters)
|
|
|
|
def benchmarkExplicitVsSamePaddingEager(self):
|
|
"""Compare performance of EXPLICIT and SAME padding in eager mode.
|
|
|
|
A Conv2D op with SAME padding is benchmarked, and an equivalent Conv2D op
|
|
with explicit padding is benchmarked, where the padding is the same as in
|
|
the SAME case. Currently, EXPLICIT padding is slightly slower, due to the
|
|
fact the Python padding list must be checked and processed before the Conv2D
|
|
op can run.
|
|
"""
|
|
# TODO(reedwm): Make EXPLICIT padding as fast as SAME padding.
|
|
if not test.is_gpu_available():
|
|
return
|
|
|
|
with context.eager_mode():
|
|
burn_iters = 15
|
|
num_convs = 20
|
|
num_iters = 50
|
|
batch_size = 64
|
|
# The input and filter correspond to a middle layer of Resnet50.
|
|
input = variables.Variable( # pylint: disable=redefined-builtin
|
|
random_ops.random_uniform([
|
|
batch_size,
|
|
256,
|
|
14,
|
|
14
|
|
]))
|
|
filter = variables.Variable(random_ops.random_uniform([3, 3, 256, 256])) # pylint: disable=redefined-builtin
|
|
strides = [1, 1, 1, 1]
|
|
padding = [(0, 0), (0, 0), (1, 1), (1, 1)]
|
|
output_explicit_pad = input
|
|
output_same_pad = input
|
|
for _ in range(burn_iters):
|
|
output_explicit_pad = nn_ops.conv2d(
|
|
output_explicit_pad,
|
|
filter,
|
|
strides,
|
|
padding=padding,
|
|
data_format="NCHW")
|
|
output_same_pad = nn_ops.conv2d(
|
|
output_same_pad,
|
|
filter,
|
|
strides,
|
|
padding="SAME",
|
|
data_format="NCHW")
|
|
|
|
start = time.time()
|
|
for _ in range(num_iters):
|
|
with backprop.GradientTape() as tape:
|
|
for _ in range(num_convs):
|
|
output_explicit_pad = nn_ops.conv2d(
|
|
output_explicit_pad,
|
|
filter,
|
|
strides,
|
|
padding=padding,
|
|
data_format="NCHW")
|
|
tape.gradient(output_explicit_pad, filter)
|
|
end = time.time()
|
|
self.report_benchmark(
|
|
name="eager_explicit_pad",
|
|
wall_time=(end - start) / num_iters,
|
|
iters=num_iters)
|
|
|
|
start = time.time()
|
|
for _ in range(num_iters):
|
|
with backprop.GradientTape() as tape:
|
|
for _ in range(num_convs):
|
|
output_same_pad = nn_ops.conv2d(
|
|
output_same_pad,
|
|
filter,
|
|
strides,
|
|
padding="SAME",
|
|
data_format="NCHW")
|
|
tape.gradient(output_same_pad, filter)
|
|
end = time.time()
|
|
self.report_benchmark(
|
|
name="eager_same_pad",
|
|
wall_time=(end - start) / num_iters,
|
|
iters=num_iters)
|
|
|
|
|
|
def GetInceptionFwdTest(input_size, filter_size, stride, padding,
|
|
gpu_only=False):
|
|
|
|
def Test(self):
|
|
if gpu_only and not test.is_gpu_available():
|
|
tf_logging.info("Skipping InceptionFwd %s", (input_size, filter_size,
|
|
stride, padding))
|
|
return
|
|
tf_logging.info("Testing InceptionFwd %s", (input_size, filter_size, stride,
|
|
padding))
|
|
self._CompareFwdValues(input_size, filter_size, [stride, stride], padding)
|
|
|
|
return Test
|
|
|
|
|
|
def GetInceptionFwdDilatedConvTest(input_size, filter_size, stride, padding):
|
|
|
|
def Test(self):
|
|
if stride == 1:
|
|
tf_logging.info("Testing InceptionFwd with dilations %s",
|
|
(input_size, filter_size, stride, padding))
|
|
self._VerifyDilatedConvValues(
|
|
tensor_in_sizes=input_size,
|
|
filter_in_sizes=filter_size,
|
|
strides=[stride, stride],
|
|
dilations=[2, 2],
|
|
padding=padding,
|
|
rtol=5e-4)
|
|
|
|
return Test
|
|
|
|
|
|
def GetInceptionBackInputTest(input_size, filter_size, output_size, stride,
|
|
padding,
|
|
gpu_only=False):
|
|
|
|
def Test(self):
|
|
if gpu_only and not test.is_gpu_available():
|
|
tf_logging.info("Skipping InceptionBackInput %s",
|
|
(input_size, filter_size, output_size, stride, padding))
|
|
return
|
|
tf_logging.info("Testing InceptionBackInput %s",
|
|
(input_size, filter_size, output_size, stride, padding))
|
|
self._CompareBackpropInput(input_size, filter_size, output_size,
|
|
[stride, stride], padding)
|
|
|
|
return Test
|
|
|
|
|
|
def GetInceptionBackFilterTest(input_size, filter_size, output_size, strides,
|
|
padding, gpu_only=False):
|
|
|
|
def Test(self):
|
|
if gpu_only and not test.is_gpu_available():
|
|
tf_logging.info("Skipping InceptionBackFilter %s",
|
|
(input_size, filter_size, output_size, strides, padding))
|
|
return
|
|
tf_logging.info("Testing InceptionBackFilter %s",
|
|
(input_size, filter_size, output_size, strides, padding))
|
|
self._CompareBackFilter(input_size, filter_size, output_size, strides,
|
|
padding)
|
|
|
|
return Test
|
|
|
|
|
|
if __name__ == "__main__":
|
|
for index, (input_size_, filter_size_, output_size_, stride_,
|
|
padding_) in enumerate(GetShrunkInceptionShapes()):
|
|
setattr(Conv2DTest, "testInceptionFwd_" + str(index),
|
|
test_util.run_in_graph_and_eager_modes(
|
|
GetInceptionFwdTest(input_size_, filter_size_, stride_,
|
|
padding_)))
|
|
setattr(
|
|
Conv2DTest, "testInceptionFwdDilatedConv_" + str(index),
|
|
test_util.run_in_graph_and_eager_modes(GetInceptionFwdDilatedConvTest(
|
|
input_size_, filter_size_, stride_, padding_)))
|
|
setattr(Conv2DTest, "testInceptionBackInput_" + str(index),
|
|
test_util.run_in_graph_and_eager_modes(
|
|
GetInceptionBackInputTest(input_size_, filter_size_,
|
|
output_size_, stride_, padding_)))
|
|
setattr(Conv2DTest, "testInceptionBackFilter_" + str(index),
|
|
test_util.run_in_graph_and_eager_modes(
|
|
GetInceptionBackFilterTest(input_size_, filter_size_,
|
|
output_size_, [stride_, stride_],
|
|
padding_)))
|
|
|
|
# TODO(b/35359731)
|
|
# Fwd, BckInput, and BackFilter to test that for certain input parameter
|
|
# set, winograd nonfused algorithm will be excluded from conv autotune. If
|
|
# in such case, winograd nonfused algorithm is added as one option of the
|
|
# conv autotune, and cuDNN version is smaller than 7, the following tests
|
|
# will fail.
|
|
ishape = [1, 400, 400, 1]
|
|
fshape = [1, 1, 1, 256]
|
|
oshape = [1, 400, 400, 256]
|
|
setattr(Conv2DTest, "testInceptionFwd_No_Winograd_Nonfused",
|
|
test_util.run_in_graph_and_eager_modes(
|
|
GetInceptionFwdTest(ishape, fshape, 1, "SAME", gpu_only=True)))
|
|
setattr(Conv2DTest, "testInceptionFwdDilatedConv_No_Winograd_Nonfused",
|
|
test_util.run_in_graph_and_eager_modes(
|
|
GetInceptionFwdDilatedConvTest(ishape, fshape, 1, "SAME")))
|
|
setattr(Conv2DTest, "testInceptionBackInput_No_Winograd_Nonfused",
|
|
test_util.run_in_graph_and_eager_modes(
|
|
GetInceptionBackInputTest(ishape, fshape, oshape, 1, "SAME",
|
|
gpu_only=True)))
|
|
setattr(Conv2DTest, "testInceptionBackFilter_No_Winograd_Nonfused",
|
|
test_util.run_in_graph_and_eager_modes(
|
|
GetInceptionBackFilterTest(ishape, fshape, oshape, [1, 1], "SAME",
|
|
gpu_only=True)))
|
|
test.main()
|