STT-tensorflow/tensorflow/python/kernel_tests/conv2d_transpose_test.py
Sung Jin Hwang 9d08b6bb4f Added int32 supports for Conv2D and Conv2DBackpropInput ops.
PiperOrigin-RevId: 275947647
Change-Id: I53be4e110b8e369c3a17b793015e1713c4d5f5fb
2019-10-21 17:27:50 -07:00

319 lines
12 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for convolution related functionality in tensorflow.ops.nn."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gradient_checker
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops import variables
import tensorflow.python.ops.nn_grad # pylint: disable=unused-import
from tensorflow.python.platform import test
class Conv2DTransposeTest(test.TestCase):
def testConv2DTransposeSingleStride(self):
with self.cached_session():
for dtype in (dtypes.float32, dtypes.int32):
strides = [1, 1, 1, 1]
# Input, output: [batch, height, width, depth]
x_shape = [2, 6, 4, 3]
y_shape = [2, 6, 4, 2]
# Filter: [kernel_height, kernel_width, output_depth, input_depth]
f_shape = [3, 3, 2, 3]
x = constant_op.constant(1, shape=x_shape, name="x", dtype=dtype)
f = constant_op.constant(1, shape=f_shape, name="filter", dtype=dtype)
output = nn_ops.conv2d_transpose(
x, f, y_shape, strides=strides, padding="SAME")
value = self.evaluate(output)
# We count the number of cells being added at the locations in the
# output.
# At the center, #cells=kernel_height * kernel_width
# At the corners, #cells=ceil(kernel_height/2) * ceil(kernel_width/2)
# At the borders, #cells=ceil(kernel_height/2)*kernel_width or
# kernel_height * ceil(kernel_width/2)
for n in xrange(x_shape[0]):
for k in xrange(f_shape[2]):
for w in xrange(y_shape[2]):
for h in xrange(y_shape[1]):
target = 4 * 3
h_in = h > 0 and h < y_shape[1] - 1
w_in = w > 0 and w < y_shape[2] - 1
if h_in and w_in:
target += 5 * 3
elif h_in or w_in:
target += 2 * 3
if dtype.is_integer:
self.assertAllEqual(target, value[n, h, w, k])
else:
self.assertAllClose(target, value[n, h, w, k])
def testConv2DTransposeSame(self):
with self.cached_session():
for dtype in (dtypes.float32, dtypes.int32):
strides = [1, 2, 2, 1]
# Input, output: [batch, height, width, depth]
x_shape = [2, 6, 4, 3]
y_shape = [2, 12, 8, 2]
# Filter: [kernel_height, kernel_width, output_depth, input_depth]
f_shape = [3, 3, 2, 3]
x = constant_op.constant(1, shape=x_shape, name="x", dtype=dtype)
f = constant_op.constant(1, shape=f_shape, name="filter", dtype=dtype)
output = nn_ops.conv2d_transpose(
x, f, y_shape, strides=strides, padding="SAME")
value = self.evaluate(output)
for n in xrange(x_shape[0]):
for k in xrange(f_shape[2]):
for w in xrange(y_shape[2]):
for h in xrange(y_shape[1]):
target = 3
# We add a case for locations divisible by the stride.
h_in = h % strides[1] == 0 and h > 0 and h < y_shape[1] - 1
w_in = w % strides[2] == 0 and w > 0 and w < y_shape[2] - 1
if h_in and w_in:
target += 9
elif h_in or w_in:
target += 3
if dtype.is_integer:
self.assertAllEqual(target, value[n, h, w, k])
else:
self.assertAllClose(target, value[n, h, w, k])
def testConv2DTransposeValid(self):
with self.cached_session():
for dtype in (dtypes.float32, dtypes.int32):
strides = [1, 2, 2, 1]
# Input, output: [batch, height, width, depth]
x_shape = [2, 6, 4, 3]
y_shape = [2, 13, 9, 2]
# Filter: [kernel_height, kernel_width, output_depth, input_depth]
f_shape = [3, 3, 2, 3]
x = constant_op.constant(1, shape=x_shape, name="x", dtype=dtype)
f = constant_op.constant(1, shape=f_shape, name="filter", dtype=dtype)
output = nn_ops.conv2d_transpose(
x, f, y_shape, strides=strides, padding="VALID")
value = self.evaluate(output)
cache_values = np.zeros(y_shape, dtype=np.float32)
# The amount of padding added
pad = 1
for n in xrange(x_shape[0]):
for k in xrange(f_shape[2]):
for w in xrange(pad, y_shape[2] - pad):
for h in xrange(pad, y_shape[1] - pad):
target = 3
# We add a case for locations divisible by the stride.
h_in = h % strides[1] == 0 and h > pad and h < y_shape[
1] - 1 - pad
w_in = w % strides[2] == 0 and w > pad and w < y_shape[
2] - 1 - pad
if h_in and w_in:
target += 9
elif h_in or w_in:
target += 3
cache_values[n, h, w, k] = target
# copy values in the border
cache_values[n, :, 0, k] = cache_values[n, :, 1, k]
cache_values[n, :, -1, k] = cache_values[n, :, -2, k]
cache_values[n, 0, :, k] = cache_values[n, 1, :, k]
cache_values[n, -1, :, k] = cache_values[n, -2, :, k]
if dtype.is_integer:
self.assertAllEqual(cache_values, value)
else:
self.assertAllClose(cache_values, value)
@test_util.run_deprecated_v1
def testGradient(self):
x_shape = [2, 6, 4, 3]
f_shape = [3, 3, 2, 3]
y_shape = [2, 12, 8, 2]
strides = [1, 2, 2, 1]
np.random.seed(1) # Make it reproducible.
x_val = np.random.random_sample(x_shape).astype(np.float64)
f_val = np.random.random_sample(f_shape).astype(np.float64)
with self.cached_session():
x = constant_op.constant(x_val, name="x", dtype=dtypes.float32)
f = constant_op.constant(f_val, name="f", dtype=dtypes.float32)
output = nn_ops.conv2d_transpose(
x, f, y_shape, strides=strides, padding="SAME")
err = gradient_checker.compute_gradient_error([x, f], [x_shape, f_shape],
output, y_shape)
print("conv2d_transpose gradient err = %g " % err)
err_tolerance = 0.0005
self.assertLess(err, err_tolerance)
def testConv2DTransposeSingleStrideNCHW(self):
# `NCHW` data format is only supported for CUDA device.
if test.is_gpu_available(cuda_only=True):
with self.session(use_gpu=True):
strides = [1, 1, 1, 1]
# Input, output: [batch, depth, height, width, depth]
x_shape = [2, 3, 6, 4]
y_shape = [2, 2, 6, 4]
# Filter: [kernel_height, kernel_width, output_depth, input_depth]
f_shape = [3, 3, 2, 3]
x = constant_op.constant(
1.0, shape=x_shape, name="x", dtype=dtypes.float32)
f = constant_op.constant(
1.0, shape=f_shape, name="filter", dtype=dtypes.float32)
output = nn_ops.conv2d_transpose(
x, f, y_shape, strides=strides, padding="SAME", data_format="NCHW")
value = self.evaluate(output)
for n in xrange(x_shape[0]):
for k in xrange(f_shape[2]):
for w in xrange(y_shape[3]):
for h in xrange(y_shape[2]):
target = 4 * 3.0
h_in = h > 0 and h < y_shape[2] - 1
w_in = w > 0 and w < y_shape[3] - 1
if h_in and w_in:
target += 5 * 3.0
elif h_in or w_in:
target += 2 * 3.0
self.assertAllClose(target, value[n, k, h, w])
def testConv2DTransposeSameNCHW(self):
# `NCHW` data format is only supported for CUDA device.
if test.is_gpu_available(cuda_only=True):
with self.session(use_gpu=True):
strides = [1, 1, 2, 2]
# Input, output: [batch, depth, height, width]
x_shape = [2, 3, 6, 4]
y_shape = [2, 2, 12, 8]
# Filter: [kernel_height, kernel_width, output_depth, input_depth]
f_shape = [3, 3, 2, 3]
x = constant_op.constant(
1.0, shape=x_shape, name="x", dtype=dtypes.float32)
f = constant_op.constant(
1.0, shape=f_shape, name="filter", dtype=dtypes.float32)
output = nn_ops.conv2d_transpose(
x, f, y_shape, strides=strides, padding="SAME", data_format="NCHW")
value = self.evaluate(output)
for n in xrange(x_shape[0]):
for k in xrange(f_shape[2]):
for w in xrange(y_shape[3]):
for h in xrange(y_shape[2]):
target = 3.0
# We add a case for locations divisible by the stride.
h_in = h % strides[2] == 0 and h > 0 and h < y_shape[2] - 1
w_in = w % strides[3] == 0 and w > 0 and w < y_shape[3] - 1
if h_in and w_in:
target += 9.0
elif h_in or w_in:
target += 3.0
self.assertAllClose(target, value[n, k, h, w])
def testConv2DTransposeValidNCHW(self):
# `NCHW` data format is only supported for CUDA device.
if test.is_gpu_available(cuda_only=True):
with self.session(use_gpu=True):
strides = [1, 1, 2, 2]
# Input, output: [batch, depth, height, width]
x_shape = [2, 3, 6, 4]
y_shape = [2, 2, 13, 9]
# Filter: [kernel_height, kernel_width, output_depth, input_depth]
f_shape = [3, 3, 2, 3]
x = constant_op.constant(
1.0, shape=x_shape, name="x", dtype=dtypes.float32)
f = constant_op.constant(
1.0, shape=f_shape, name="filter", dtype=dtypes.float32)
output = nn_ops.conv2d_transpose(
x, f, y_shape, strides=strides, padding="VALID", data_format="NCHW")
value = self.evaluate(output)
cache_values = np.zeros(y_shape, dtype=np.float32)
# The amount of padding added
pad = 1
for n in xrange(x_shape[0]):
for k in xrange(f_shape[2]):
for w in xrange(pad, y_shape[3] - pad):
for h in xrange(pad, y_shape[2] - pad):
target = 3.0
# We add a case for locations divisible by the stride.
h_in = h % strides[2] == 0 and h > pad and h < y_shape[
2] - 1 - pad
w_in = w % strides[3] == 0 and w > pad and w < y_shape[
3] - 1 - pad
if h_in and w_in:
target += 9.0
elif h_in or w_in:
target += 3.0
cache_values[n, k, h, w] = target
# copy values in the border
cache_values[n, k, :, 0] = cache_values[n, k, :, 1]
cache_values[n, k, :, -1] = cache_values[n, k, :, -2]
cache_values[n, k, 0, :] = cache_values[n, k, 1, :]
cache_values[n, k, -1, :] = cache_values[n, k, -2, :]
self.assertAllClose(cache_values, value)
def testConv2DTransposeShapeInference(self):
# Test case for 8972
initializer = random_ops.truncated_normal(
[3, 3, 5, 1], mean=0.0, stddev=0.01, dtype=dtypes.float32)
x = variables.Variable(random_ops.random_normal([3, 10, 5, 1]))
f = variable_scope.get_variable("f", initializer=initializer)
f_shape = array_ops.stack([array_ops.shape(x)[0], 10, 5, 5])
output = nn_ops.conv2d_transpose(
x, f, f_shape, strides=[1, 1, 1, 1], padding="SAME")
self.assertEqual(output.get_shape().as_list(), [3, 10, 5, 5])
if __name__ == "__main__":
test.main()