This extends the support just added for tf.nn.conv2d and keras.layers.Conv2D. PiperOrigin-RevId: 314738423 Change-Id: I588c36e493d1f41a67b9721e2cbd84c564277f44
127 lines
5.0 KiB
Python
127 lines
5.0 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for convolution related functionality in tensorflow.ops.nn."""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
from six.moves import xrange # pylint: disable=redefined-builtin
|
|
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import nn_ops
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
class Conv1DTest(test.TestCase):
|
|
|
|
def testBasic(self):
|
|
"""Test that argument passing to conv1d is handled properly."""
|
|
# double datatype is currently not supported for convolution ops
|
|
# on the ROCm platform
|
|
optional_float64 = [] if test.is_built_with_rocm() else [dtypes.float64]
|
|
for dtype in [dtypes.float16, dtypes.float32] + optional_float64:
|
|
x = constant_op.constant([1, 2, 3, 4], dtype=dtype)
|
|
x = array_ops.expand_dims(x, 0) # Add batch dimension
|
|
x = array_ops.expand_dims(x, 2) # And depth dimension
|
|
filters = constant_op.constant([2, 1], dtype=dtype)
|
|
filters = array_ops.expand_dims(filters, 1) # in_channels
|
|
filters = array_ops.expand_dims(filters, 2) # out_channels
|
|
# Filters is 2x1x1
|
|
for stride in [1, 2]:
|
|
with self.cached_session(use_gpu=test.is_gpu_available()):
|
|
c = nn_ops.conv1d(x, filters, stride, padding="VALID")
|
|
reduced = array_ops.squeeze(c)
|
|
output = self.evaluate(reduced)
|
|
if stride == 1:
|
|
self.assertEqual(len(output), 3)
|
|
self.assertAllClose(output,
|
|
[2 * 1 + 1 * 2, 2 * 2 + 1 * 3, 2 * 3 + 1 * 4])
|
|
else:
|
|
self.assertEqual(len(output), 2)
|
|
self.assertAllClose(output, [2 * 1 + 1 * 2, 2 * 3 + 1 * 4])
|
|
|
|
def testExpandedBatch(self):
|
|
"""Test that argument passing to conv1d is handled properly."""
|
|
# double datatype is currently not supported for convolution ops
|
|
# on the ROCm platform
|
|
x = constant_op.constant([1, 2, 3, 4], dtype=dtypes.float32)
|
|
x = array_ops.expand_dims(x, 0) # Add batch dimension
|
|
x = array_ops.expand_dims(x, 2) # And depth dimension
|
|
x = array_ops.stack([x, x]) # Make batch shape [2, 1]
|
|
filters = constant_op.constant([2, 1], dtype=dtypes.float32)
|
|
filters = array_ops.expand_dims(filters, 1) # in_channels
|
|
filters = array_ops.expand_dims(filters, 2) # out_channels
|
|
# Filters is 2x1x1
|
|
for stride in [1, 2]:
|
|
with self.cached_session(use_gpu=test.is_gpu_available()):
|
|
c = nn_ops.conv1d(x, filters, stride, padding="VALID")
|
|
reduced = array_ops.squeeze(c) # Sequeeze out dims 1 and 3.
|
|
output = self.evaluate(reduced)
|
|
if stride == 1:
|
|
self.assertAllClose(output,
|
|
[[2 * 1 + 1 * 2, 2 * 2 + 1 * 3, 2 * 3 + 1 * 4],
|
|
[2 * 1 + 1 * 2, 2 * 2 + 1 * 3, 2 * 3 + 1 * 4]])
|
|
else:
|
|
self.assertAllClose(
|
|
output,
|
|
[[2 * 1 + 1 * 2, 2 * 3 + 1 * 4], [2 * 1 + 1 * 2, 2 * 3 + 1 * 4]])
|
|
|
|
def testConv1DTranspose(self):
|
|
with self.cached_session():
|
|
stride = 2
|
|
|
|
# Input, output: [batch, width, depth]
|
|
x_shape = [2, 4, 3]
|
|
y_shape = [2, 9, 2]
|
|
|
|
# Filter: [kernel_width, output_depth, input_depth]
|
|
f_shape = [3, 2, 3]
|
|
|
|
x = constant_op.constant(
|
|
1.0, shape=x_shape, name="x", dtype=dtypes.float32)
|
|
f = constant_op.constant(
|
|
1.0, shape=f_shape, name="filter", dtype=dtypes.float32)
|
|
output = nn_ops.conv1d_transpose(
|
|
x, f, y_shape, strides=stride, padding="VALID")
|
|
value = self.evaluate(output)
|
|
|
|
cache_values = np.zeros(y_shape, dtype=np.float32)
|
|
|
|
# The amount of padding added
|
|
pad = 1
|
|
|
|
for n in xrange(x_shape[0]):
|
|
for k in xrange(f_shape[1]):
|
|
for w in xrange(pad, y_shape[1] - pad):
|
|
target = 3.0
|
|
# We add a case for locations divisible by the stride.
|
|
w_in = w % stride == 0 and w > pad and w < y_shape[1] - 1 - pad
|
|
if w_in:
|
|
target += 3.0
|
|
cache_values[n, w, k] = target
|
|
|
|
# copy values in the border
|
|
cache_values[n, 0, k] = cache_values[n, 1, k]
|
|
cache_values[n, -1, k] = cache_values[n, -2, k]
|
|
|
|
self.assertAllClose(cache_values, value)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|