STT-tensorflow/tensorflow/python/kernel_tests/constant_op_test.py
Mark Daoust 41d03e186c Apply tf1-tf2 renames to tensorflow/python/kernel_tests docstrings and comments.
No code changes, only doc-strings and comments.

PiperOrigin-RevId: 244372113
2019-04-19 09:54:23 -07:00

987 lines
36 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for ConstantOp."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from google.protobuf import text_format
from tensorflow.core.framework import graph_pb2
from tensorflow.core.framework import tensor_pb2
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes as dtypes_lib
from tensorflow.python.framework import errors_impl
from tensorflow.python.framework import importer
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gradient_checker
from tensorflow.python.ops import logging_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.platform import test
from tensorflow.python.util import compat
class ConstantTest(test.TestCase):
def _testCpu(self, x):
np_ans = np.array(x)
with self.cached_session(use_gpu=False):
tf_ans = ops.convert_to_tensor(x).eval()
dtype = dtypes_lib.as_dtype(np_ans.dtype)
if dtype.is_floating or dtype.is_complex:
self.assertAllClose(np_ans, tf_ans)
else:
self.assertAllEqual(np_ans, tf_ans)
def _testGpu(self, x):
np_ans = np.array(x)
with self.cached_session(use_gpu=True):
tf_ans = ops.convert_to_tensor(x).eval()
dtype = dtypes_lib.as_dtype(np_ans.dtype)
if dtype.is_floating or dtype.is_complex:
self.assertAllClose(np_ans, tf_ans)
else:
self.assertAllEqual(np_ans, tf_ans)
def _testAll(self, x):
self._testCpu(x)
self._testGpu(x)
def testInvalidDType(self):
# Test case for GitHub issue 18474
with self.assertRaises(TypeError):
constant_op.constant(dtypes_lib.string, "[,]")
@test_util.run_deprecated_v1
def testBFloat16(self):
bfloat16 = dtypes_lib.bfloat16.as_numpy_dtype
self._testAll(np.arange(-15, 15).reshape([2, 3, 5]).astype(bfloat16))
self._testAll(
np.random.normal(size=30).reshape([2, 3, 5]).astype(bfloat16))
self._testAll(np.empty((2, 0, 5)).astype(bfloat16))
@test_util.run_deprecated_v1
def testHalf(self):
self._testAll(np.arange(-15, 15).reshape([2, 3, 5]).astype(np.float16))
self._testAll(
np.random.normal(size=30).reshape([2, 3, 5]).astype(np.float16))
self._testAll(np.empty((2, 0, 5)).astype(np.float16))
@test_util.run_deprecated_v1
def testFloat(self):
self._testAll(np.arange(-15, 15).reshape([2, 3, 5]).astype(np.float32))
self._testAll(
np.random.normal(size=30).reshape([2, 3, 5]).astype(np.float32))
self._testAll(np.empty((2, 0, 5)).astype(np.float32))
@test_util.run_deprecated_v1
def testDouble(self):
self._testAll(np.arange(-15, 15).reshape([2, 3, 5]).astype(np.float64))
self._testAll(
np.random.normal(size=30).reshape([2, 3, 5]).astype(np.float64))
self._testAll(np.empty((2, 0, 5)).astype(np.float64))
@test_util.run_deprecated_v1
def testInt32(self):
self._testAll(np.arange(-15, 15).reshape([2, 3, 5]).astype(np.int32))
self._testAll((100 * np.random.normal(size=30)).reshape([2, 3, 5]).astype(
np.int32))
self._testAll(np.empty((2, 0, 5)).astype(np.int32))
@test_util.run_deprecated_v1
def testInt64(self):
self._testAll(np.arange(-15, 15).reshape([2, 3, 5]).astype(np.int64))
self._testAll((100 * np.random.normal(size=30)).reshape([2, 3, 5]).astype(
np.int64))
self._testAll(np.empty((2, 0, 5)).astype(np.int64))
@test_util.run_deprecated_v1
def testComplex64(self):
self._testAll(
np.complex(1, 2) *
np.arange(-15, 15).reshape([2, 3, 5]).astype(np.complex64))
self._testAll(
np.complex(1, 2) *
np.random.normal(size=30).reshape([2, 3, 5]).astype(np.complex64))
self._testAll(np.empty((2, 0, 5)).astype(np.complex64))
@test_util.run_deprecated_v1
def testComplex128(self):
self._testAll(
np.complex(1, 2) *
np.arange(-15, 15).reshape([2, 3, 5]).astype(np.complex128))
self._testAll(
np.complex(1, 2) *
np.random.normal(size=30).reshape([2, 3, 5]).astype(np.complex128))
self._testAll(np.empty((2, 0, 5)).astype(np.complex128))
@test_util.run_deprecated_v1
def testString(self):
self._testCpu(
np.array([compat.as_bytes(str(x)) for x in np.arange(-15, 15)]).reshape(
[2, 3, 5]))
self._testCpu(np.empty((2, 0, 5)).astype(np.str_))
@test_util.run_deprecated_v1
def testVariant(self):
# TODO(ebrevdo): Re-enable use_gpu=True once non-DMA Variant
# copying between CPU and GPU is supported.
with self.session(use_gpu=False):
variant_tensor = tensor_pb2.TensorProto(
dtype=dtypes_lib.variant.as_datatype_enum,
tensor_shape=tensor_shape.TensorShape([]).as_proto(),
variant_val=[
tensor_pb2.VariantTensorDataProto(
# Match registration in variant_op_registry.cc
type_name=b"int",
metadata=np.array(1, dtype=np.int32).tobytes())
])
const = constant_op.constant(variant_tensor)
const_value = const.op.get_attr("value")
# Ensure we stored the tensor proto properly.
self.assertProtoEquals(variant_tensor, const_value)
# Smoke test -- ensure this executes without trouble.
# Right now, non-numpy-compatible objects cannot be returned from a
# session.run call; similarly, objects that can't be converted to
# native numpy types cannot be passed to ops.convert_to_tensor.
# TODO(ebrevdo): Add registration mechanism for
# ops.convert_to_tensor and for session.run output.
logging_const_op = logging_ops.Print(
const, [const],
message="Variant storing an int, decoded const value:").op
logging_const_op.run()
@test_util.run_deprecated_v1
def testStringWithNulls(self):
with self.cached_session():
val = ops.convert_to_tensor(b"\0\0\0\0").eval()
self.assertEqual(len(val), 4)
self.assertEqual(val, b"\0\0\0\0")
with self.cached_session():
val = ops.convert_to_tensor(b"xx\0xx").eval()
self.assertEqual(len(val), 5)
self.assertAllEqual(val, b"xx\0xx")
nested = [[b"\0\0\0\0", b"xx\0xx"], [b"\0_\0_\0_\0", b"\0"]]
with self.cached_session():
val = ops.convert_to_tensor(nested).eval()
# NOTE(mrry): Do not use assertAllEqual, because it converts nested to a
# numpy array, which loses the null terminators.
self.assertEqual(val.tolist(), nested)
def testExplicitShapeNumPy(self):
with ops.Graph().as_default():
c = constant_op.constant(
np.arange(-15, 15).reshape([2, 3, 5]).astype(np.float32),
shape=[2, 3, 5])
self.assertEqual(c.get_shape(), [2, 3, 5])
@test_util.assert_no_new_pyobjects_executing_eagerly
def testEagerMemory(self):
"""Tests PyObject refs are managed correctly when executing eagerly."""
constant_op.constant([[1.]])
def testImplicitShapeNumPy(self):
with ops.Graph().as_default():
c = constant_op.constant(
np.arange(-15, 15).reshape([2, 3, 5]).astype(np.float32))
self.assertEqual(c.get_shape(), [2, 3, 5])
def testExplicitShapeList(self):
with ops.Graph().as_default():
c = constant_op.constant([1, 2, 3, 4, 5, 6, 7], shape=[7])
self.assertEqual(c.get_shape(), [7])
def testImplicitShapeList(self):
with ops.Graph().as_default():
c = constant_op.constant([1, 2, 3, 4, 5, 6, 7])
self.assertEqual(c.get_shape(), [7])
def testExplicitShapeNumber(self):
with ops.Graph().as_default():
c = constant_op.constant(1, shape=[1])
self.assertEqual(c.get_shape(), [1])
def testImplicitShapeNumber(self):
with ops.Graph().as_default():
c = constant_op.constant(1)
self.assertEqual(c.get_shape(), [])
def testShapeInconsistent(self):
with ops.Graph().as_default():
c = constant_op.constant_v1([1, 2, 3, 4, 5, 6, 7], shape=[10])
self.assertEqual(c.get_shape(), [10])
with ops.Graph().as_default():
with self.assertRaisesRegexp(
TypeError, "Expected Tensor's shape"):
c = constant_op.constant([1, 2, 3, 4, 5, 6, 7], shape=[10])
def testPromotionShapes(self):
with ops.Graph().as_default():
c = constant_op.constant([7], shape=[10])
self.assertEqual(c.get_shape(), [10])
with ops.Graph().as_default():
c = constant_op.constant(3, shape=[10])
self.assertEqual(c.get_shape(), [10])
# pylint: disable=g-long-lambda
def testShapeWrong(self):
with ops.Graph().as_default():
with self.assertRaisesRegexp(ValueError, "Too many elements provided."):
constant_op.constant_v1([1, 2, 3, 4, 5, 6, 7], shape=[5])
with self.assertRaisesRegexp(TypeError, "Expected Tensor's shape"):
constant_op.constant([1, 2, 3, 4, 5, 6, 7], shape=[5])
# pylint: enable=g-long-lambda
# TODO(b/35396543): Temporarily disable: suspicion that
# this is causing test timeouts.
def _testTooLargeConstant(self):
with ops.Graph().as_default():
large_array = np.zeros((512, 1024, 1024), dtype=np.float32)
with self.assertRaisesRegexp(
ValueError,
"Cannot create a tensor proto whose content is larger than 2GB."):
c = constant_op.constant(large_array)
# TODO(b/35396543): Temporarily disable: suspicion that
# this is causing test timeouts.
def _testTooLargeGraph(self):
with ops.Graph().as_default() as g:
large_array = np.zeros((256, 1024, 1024), dtype=np.float32)
c = constant_op.constant(large_array)
d = constant_op.constant(large_array)
with self.assertRaisesRegexp(ValueError,
"GraphDef cannot be larger than 2GB."):
g.as_graph_def()
@test_util.run_deprecated_v1
def testSparseValuesRaiseErrors(self):
with self.assertRaisesRegexp(ValueError,
"setting an array element with a sequence"):
c = constant_op.constant([[1, 2], [3]], dtype=dtypes_lib.int32)
with self.assertRaisesRegexp(ValueError, "must be a dense"):
c = constant_op.constant([[1, 2], [3]])
with self.assertRaisesRegexp(ValueError, "must be a dense"):
c = constant_op.constant([[1, 2], [3], [4, 5]])
class AsTensorTest(test.TestCase):
def testAsTensorForTensorInput(self):
with ops.Graph().as_default():
t = constant_op.constant(10.0)
x = ops.convert_to_tensor(t)
self.assertIs(t, x)
def testAsTensorForNonTensorInput(self):
with ops.Graph().as_default():
x = ops.convert_to_tensor(10.0)
self.assertTrue(isinstance(x, ops.Tensor))
def testAsTensorForShapeInput(self):
with self.cached_session():
x = ops.convert_to_tensor(tensor_shape.TensorShape([]))
self.assertEqual(dtypes_lib.int32, x.dtype)
self.assertAllEqual([], self.evaluate(x))
x = ops.convert_to_tensor(tensor_shape.TensorShape([1, 2, 3]))
self.assertEqual(dtypes_lib.int32, x.dtype)
self.assertAllEqual([1, 2, 3], self.evaluate(x))
x = ops.convert_to_tensor(tensor_shape.TensorShape([2**31-1, 2, 3]))
self.assertEqual(dtypes_lib.int32, x.dtype)
self.assertAllEqual([2**31 - 1, 2, 3], self.evaluate(x))
x = ops.convert_to_tensor(tensor_shape.TensorShape([2**31-1, 2, 3]),
dtype=dtypes_lib.int32)
self.assertEqual(dtypes_lib.int32, x.dtype)
self.assertAllEqual([2**31 - 1, 2, 3], self.evaluate(x))
x = ops.convert_to_tensor(tensor_shape.TensorShape([2**31, 2, 3]))
self.assertEqual(dtypes_lib.int64, x.dtype)
self.assertAllEqual([2**31, 2, 3], self.evaluate(x))
x = ops.convert_to_tensor(tensor_shape.TensorShape([2**31, 2, 3]),
dtype=dtypes_lib.int64)
self.assertEqual(dtypes_lib.int64, x.dtype)
self.assertAllEqual([2**31, 2, 3], self.evaluate(x))
with self.assertRaisesRegexp(
ValueError, "a dimension is too large .2147483648."):
x = ops.convert_to_tensor(tensor_shape.TensorShape([2**31, 2, 3]),
dtype=dtypes_lib.int32)
x = ops.convert_to_tensor(
tensor_shape.TensorShape([1, 2, 3]), dtype=dtypes_lib.int64)
self.assertEqual(dtypes_lib.int64, x.dtype)
self.assertAllEqual([1, 2, 3], self.evaluate(x))
x = array_ops.reshape(
array_ops.zeros([6]), tensor_shape.TensorShape([2, 3]))
self.assertAllEqual([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], self.evaluate(x))
with self.assertRaisesRegexp(ValueError, "partially known"):
ops.convert_to_tensor(tensor_shape.TensorShape(None))
with self.assertRaisesRegexp(ValueError, "partially known"):
ops.convert_to_tensor(tensor_shape.TensorShape([1, None, 64]))
with self.assertRaises(TypeError):
ops.convert_to_tensor(
tensor_shape.TensorShape([1, 2, 3]), dtype=dtypes_lib.float32)
@test_util.run_deprecated_v1
def testAsTensorForDimensionInput(self):
with self.cached_session():
x = ops.convert_to_tensor(tensor_shape.TensorShape([1, 2, 3])[1])
self.assertEqual(dtypes_lib.int32, x.dtype)
self.assertAllEqual(2, self.evaluate(x))
x = ops.convert_to_tensor(
tensor_shape.TensorShape([1, 2, 3])[1], dtype=dtypes_lib.int64)
self.assertEqual(dtypes_lib.int64, x.dtype)
self.assertAllEqual(2, self.evaluate(x))
shape = tensor_shape.TensorShape(None)
if shape._v2_behavior:
with self.assertRaisesRegexp(ValueError, "None values not supported"):
ops.convert_to_tensor(shape[1])
with self.assertRaisesRegexp(ValueError, "None values not supported"):
ops.convert_to_tensor(tensor_shape.TensorShape([1, None, 64])[1])
else:
with self.assertRaisesRegexp(ValueError, "unknown Dimension"):
ops.convert_to_tensor(shape[1])
with self.assertRaisesRegexp(ValueError, "unknown Dimension"):
ops.convert_to_tensor(tensor_shape.TensorShape([1, None, 64])[1])
class IdentityOpTest(test.TestCase):
def testIdTensor(self):
with ops.Graph().as_default():
x = constant_op.constant(2.0, shape=[6], name="input")
id_op = array_ops.identity(x, name="id")
self.assertTrue(isinstance(id_op.op.inputs[0], ops.Tensor))
self.assertProtoEquals("name: 'id' op: 'Identity' input: 'input' "
"attr { key: 'T' value { type: DT_FLOAT } }",
id_op.op.node_def)
class ZerosTest(test.TestCase):
def _Zeros(self, shape):
with self.cached_session():
ret = array_ops.zeros(shape)
self.assertEqual(shape, ret.get_shape())
return self.evaluate(ret)
def testConst(self):
self.assertTrue(
np.array_equal(self._Zeros([2, 3]), np.array([[0] * 3] * 2)))
def testScalar(self):
self.assertEqual(0, self._Zeros([]))
self.assertEqual(0, self._Zeros(()))
with self.cached_session():
scalar = array_ops.zeros(constant_op.constant([], dtype=dtypes_lib.int32))
self.assertEqual(0, self.evaluate(scalar))
def testDynamicSizes(self):
np_ans = np.array([[0] * 3] * 2)
with self.cached_session():
# Creates a tensor of 2 x 3.
d = array_ops.fill([2, 3], 12., name="fill")
# Constructs a tensor of zeros of the same dimensions as "d".
z = array_ops.zeros(array_ops.shape(d))
out = self.evaluate(z)
self.assertAllEqual(np_ans, out)
self.assertShapeEqual(np_ans, d)
self.assertShapeEqual(np_ans, z)
@test_util.run_deprecated_v1
def testDtype(self):
with self.cached_session():
d = array_ops.fill([2, 3], 12., name="fill")
self.assertEqual(d.get_shape(), [2, 3])
# Test default type for both constant size and dynamic size
z = array_ops.zeros([2, 3])
self.assertEqual(z.dtype, dtypes_lib.float32)
self.assertEqual([2, 3], z.get_shape())
self.assertAllEqual(z.eval(), np.zeros([2, 3]))
z = array_ops.zeros(array_ops.shape(d))
self.assertEqual(z.dtype, dtypes_lib.float32)
self.assertEqual([2, 3], z.get_shape())
self.assertAllEqual(z.eval(), np.zeros([2, 3]))
# Test explicit type control
for dtype in [
dtypes_lib.float32, dtypes_lib.float64, dtypes_lib.int32,
dtypes_lib.uint8, dtypes_lib.int16, dtypes_lib.int8,
dtypes_lib.complex64, dtypes_lib.complex128, dtypes_lib.int64,
dtypes_lib.bool, dtypes_lib.string
]:
z = array_ops.zeros([2, 3], dtype=dtype)
self.assertEqual(z.dtype, dtype)
self.assertEqual([2, 3], z.get_shape())
z_value = self.evaluate(z)
self.assertFalse(np.any(z_value))
self.assertEqual((2, 3), z_value.shape)
z = array_ops.zeros(array_ops.shape(d), dtype=dtype)
self.assertEqual(z.dtype, dtype)
self.assertEqual([2, 3], z.get_shape())
z_value = self.evaluate(z)
self.assertFalse(np.any(z_value))
self.assertEqual((2, 3), z_value.shape)
class ZerosLikeTest(test.TestCase):
def _compareZeros(self, dtype, fully_defined_shape, use_gpu):
with self.cached_session(use_gpu=use_gpu):
# Creates a tensor of non-zero values with shape 2 x 3.
# NOTE(kearnes): The default numpy dtype associated with tf.string is
# np.object (and can't be changed without breaking a lot things), which
# causes a TypeError in constant_op.constant below. Here we catch the
# special case of tf.string and set the numpy dtype appropriately.
if dtype == dtypes_lib.string:
numpy_dtype = np.string_
else:
numpy_dtype = dtype.as_numpy_dtype
if fully_defined_shape:
d = constant_op.constant(
np.ones((2, 3), dtype=numpy_dtype), dtype=dtype)
else:
d = array_ops.placeholder(dtype=dtype)
# Constructs a tensor of zeros of the same dimensions and type as "d".
z_var = array_ops.zeros_like(d)
# Test that the type is correct
self.assertEqual(z_var.dtype, dtype)
# Test that the shape is correct
if fully_defined_shape:
self.assertEqual([2, 3], z_var.get_shape())
# Test that the value is correct
feed_dict = {}
if not fully_defined_shape:
feed_dict[d] = np.ones((2, 3), dtype=numpy_dtype)
z_value = z_var.eval(feed_dict=feed_dict)
self.assertFalse(np.any(z_value))
self.assertEqual((2, 3), z_value.shape)
@test_util.run_deprecated_v1
def testZerosLikeCPU(self):
for dtype in [
dtypes_lib.half, dtypes_lib.float32, dtypes_lib.float64,
dtypes_lib.int8, dtypes_lib.uint8, dtypes_lib.int16, dtypes_lib.uint16,
dtypes_lib.int32, dtypes_lib.int64, dtypes_lib.bool,
dtypes_lib.complex64, dtypes_lib.complex128, dtypes_lib.string
]:
self._compareZeros(dtype, fully_defined_shape=False, use_gpu=False)
self._compareZeros(dtype, fully_defined_shape=True, use_gpu=False)
@test_util.run_deprecated_v1
def testZerosLikeGPU(self):
for dtype in [
dtypes_lib.half, dtypes_lib.float32, dtypes_lib.float64,
dtypes_lib.int32, dtypes_lib.int64, dtypes_lib.complex64,
dtypes_lib.complex128, dtypes_lib.bool
]:
self._compareZeros(dtype, fully_defined_shape=False, use_gpu=True)
self._compareZeros(dtype, fully_defined_shape=True, use_gpu=True)
@test_util.run_deprecated_v1
def testZerosLikePartialShape(self):
d = array_ops.placeholder(dtypes_lib.float32, shape=[None, 4, None])
z = array_ops.zeros_like(d)
self.assertEqual(d.get_shape().as_list(), z.get_shape().as_list())
@test_util.run_deprecated_v1
def testZerosLikeDtype(self):
# Make sure zeros_like works even for dtypes that cannot be cast between
with self.cached_session():
shape = (3, 5)
dtypes = np.float32, np.complex64
for in_type in dtypes:
x = np.arange(15).astype(in_type).reshape(*shape)
for out_type in dtypes:
y = array_ops.zeros_like(x, dtype=out_type).eval()
self.assertEqual(y.dtype, out_type)
self.assertEqual(y.shape, shape)
self.assertAllEqual(y, np.zeros(shape, dtype=out_type))
@test_util.run_deprecated_v1
def testZerosLikeVariant(self):
# TODO(ebrevdo): Re-enable use_gpu=True once non-DMA Variant
# copying between CPU and GPU is supported AND we register a
# ZerosLike callback for GPU for Variant storing primitive types
# in variant_op_registry.cc.
with self.session(use_gpu=False):
variant_tensor = tensor_pb2.TensorProto(
dtype=dtypes_lib.variant.as_datatype_enum,
tensor_shape=tensor_shape.TensorShape([]).as_proto(),
variant_val=[
tensor_pb2.VariantTensorDataProto(
# Match registration in variant_op_registry.cc
type_name=b"int",
metadata=np.array(1, dtype=np.int32).tobytes())
])
const_variant = constant_op.constant(variant_tensor)
zeros_like = array_ops.zeros_like(const_variant)
zeros_like_op = logging_ops.Print(
zeros_like, [const_variant, zeros_like],
message="Variant storing an int, input and output of zeros_like:").op
# Smoke test -- ensure this executes without trouble.
# Right now, non-numpy-compatible objects cannot be returned from a
# session.run call; similarly, objects that can't be converted to
# native numpy types cannot be passed to ops.convert_to_tensor.
# TODO(ebrevdo): Add registration mechanism for
# ops.convert_to_tensor and for session.run output.
zeros_like_op.run()
class OnesTest(test.TestCase):
def _Ones(self, shape):
with self.cached_session():
ret = array_ops.ones(shape)
self.assertEqual(shape, ret.get_shape())
return self.evaluate(ret)
def testConst(self):
self.assertTrue(np.array_equal(self._Ones([2, 3]), np.array([[1] * 3] * 2)))
def testScalar(self):
self.assertEqual(1, self._Ones([]))
self.assertEqual(1, self._Ones(()))
with self.cached_session():
scalar = array_ops.ones(constant_op.constant([], dtype=dtypes_lib.int32))
self.assertEqual(1, self.evaluate(scalar))
def testDynamicSizes(self):
np_ans = np.array([[1] * 3] * 2)
with self.cached_session():
# Creates a tensor of 2 x 3.
d = array_ops.fill([2, 3], 12., name="fill")
# Constructs a tensor of ones of the same dimensions as "d".
z = array_ops.ones(array_ops.shape(d))
out = self.evaluate(z)
self.assertAllEqual(np_ans, out)
self.assertShapeEqual(np_ans, d)
self.assertShapeEqual(np_ans, z)
@test_util.run_deprecated_v1
def testAutoPack(self):
with self.cached_session():
h = array_ops.placeholder(dtypes_lib.int32, shape=[])
w = array_ops.placeholder(dtypes_lib.int32, shape=[])
z = array_ops.ones([h, w])
out = z.eval(feed_dict={h: 4, w: 16})
self.assertAllEqual(out, np.array([[1] * 16] * 4))
@test_util.run_deprecated_v1
def testDtype(self):
with self.cached_session():
d = array_ops.fill([2, 3], 12., name="fill")
self.assertEqual(d.get_shape(), [2, 3])
# Test default type for both constant size and dynamic size
z = array_ops.ones([2, 3])
self.assertEqual(z.dtype, dtypes_lib.float32)
self.assertEqual([2, 3], z.get_shape())
self.assertAllEqual(z.eval(), np.ones([2, 3]))
z = array_ops.ones(array_ops.shape(d))
self.assertEqual(z.dtype, dtypes_lib.float32)
self.assertEqual([2, 3], z.get_shape())
self.assertAllEqual(z.eval(), np.ones([2, 3]))
# Test explicit type control
for dtype in (dtypes_lib.float32, dtypes_lib.float64, dtypes_lib.int32,
dtypes_lib.uint8, dtypes_lib.int16, dtypes_lib.int8,
dtypes_lib.complex64, dtypes_lib.complex128,
dtypes_lib.int64, dtypes_lib.bool):
z = array_ops.ones([2, 3], dtype=dtype)
self.assertEqual(z.dtype, dtype)
self.assertEqual([2, 3], z.get_shape())
self.assertAllEqual(z.eval(), np.ones([2, 3]))
z = array_ops.ones(array_ops.shape(d), dtype=dtype)
self.assertEqual(z.dtype, dtype)
self.assertEqual([2, 3], z.get_shape())
self.assertAllEqual(z.eval(), np.ones([2, 3]))
class OnesLikeTest(test.TestCase):
def testOnesLike(self):
for dtype in [
dtypes_lib.float32, dtypes_lib.float64, dtypes_lib.int8,
dtypes_lib.uint8, dtypes_lib.int16, dtypes_lib.uint16, dtypes_lib.int32,
dtypes_lib.int64, dtypes_lib.bool, dtypes_lib.complex64,
dtypes_lib.complex128
]:
numpy_dtype = dtype.as_numpy_dtype
with self.cached_session():
# Creates a tensor of non-zero values with shape 2 x 3.
d = constant_op.constant(
np.ones(
(2, 3), dtype=numpy_dtype), dtype=dtype)
# Constructs a tensor of zeros of the same dimensions and type as "d".
z_var = array_ops.ones_like(d)
# Test that the type is correct
self.assertEqual(z_var.dtype, dtype)
z_value = self.evaluate(z_var)
# Test that the value is correct
self.assertTrue(np.array_equal(z_value, np.array([[1] * 3] * 2)))
self.assertEqual([2, 3], z_var.get_shape())
@test_util.run_deprecated_v1
def testOnesLikePartialShape(self):
d = array_ops.placeholder(dtypes_lib.float32, shape=[None, 4, None])
z = array_ops.ones_like(d)
self.assertEqual(d.get_shape().as_list(), z.get_shape().as_list())
class FillTest(test.TestCase):
def _compare(self, dims, val, np_ans, use_gpu):
with self.cached_session(use_gpu=use_gpu):
tf_ans = array_ops.fill(dims, val, name="fill")
out = self.evaluate(tf_ans)
self.assertAllClose(np_ans, out)
# Fill does not set the shape.
# self.assertShapeEqual(np_ans, tf_ans)
def _compareAll(self, dims, val, np_ans):
self._compare(dims, val, np_ans, False)
self._compare(dims, val, np_ans, True)
def testFillFloat(self):
np_ans = np.array([[3.1415] * 3] * 2).astype(np.float32)
self._compareAll([2, 3], np_ans[0][0], np_ans)
def testFillDouble(self):
np_ans = np.array([[3.1415] * 3] * 2).astype(np.float64)
self._compareAll([2, 3], np_ans[0][0], np_ans)
def testFillInt32(self):
np_ans = np.array([[42] * 3] * 2).astype(np.int32)
self._compareAll([2, 3], np_ans[0][0], np_ans)
def testFillInt64(self):
np_ans = np.array([[-42] * 3] * 2).astype(np.int64)
self._compareAll([2, 3], np_ans[0][0], np_ans)
def testFillComplex64(self):
np_ans = np.array([[0.15 + 0.3j] * 3] * 2).astype(np.complex64)
self._compareAll([2, 3], np_ans[0][0], np_ans)
def testFillComplex128(self):
np_ans = np.array([[0.15 + 0.3j] * 3] * 2).astype(np.complex128)
self._compareAll([2, 3], np_ans[0][0], np_ans)
@test_util.run_deprecated_v1
def testFillString(self):
np_ans = np.array([[b"yolo"] * 3] * 2)
with self.session(use_gpu=False):
tf_ans = array_ops.fill([2, 3], np_ans[0][0], name="fill").eval()
self.assertAllEqual(np_ans, tf_ans)
@test_util.run_deprecated_v1
def testFillNegative(self):
with self.cached_session():
for shape in (-1,), (2, -1), (-1, 2), (-2), (-3):
with self.assertRaises(ValueError):
array_ops.fill(shape, 7)
# Using a placeholder so this won't be caught in static analysis.
dims = array_ops.placeholder(dtypes_lib.int32)
fill_t = array_ops.fill(dims, 3.0)
for shape in (-1,), (2, -1), (-1, 2), (-2), (-3):
with self.assertRaises(errors_impl.InvalidArgumentError):
fill_t.eval({dims: shape})
@test_util.run_deprecated_v1
def testShapeFunctionEdgeCases(self):
# Non-vector dimensions.
with self.assertRaises(ValueError):
array_ops.fill([[0, 1], [2, 3]], 1.0)
# Non-scalar value.
with self.assertRaises(ValueError):
array_ops.fill([3, 2], [1.0, 2.0])
# Partial dimension information.
f = array_ops.fill(array_ops.placeholder(dtypes_lib.int32, shape=(4,)), 3.0)
self.assertEqual([None, None, None, None], f.get_shape().as_list())
f = array_ops.fill(
[array_ops.placeholder(
dtypes_lib.int32, shape=()), 17], 1.0)
self.assertEqual([None, 17], f.get_shape().as_list())
@test_util.run_deprecated_v1
def testGradient(self):
with self.cached_session():
in_v = constant_op.constant(5.0)
out_shape = [3, 2]
out_filled = array_ops.fill(out_shape, in_v)
err = gradient_checker.compute_gradient_error(in_v, [], out_filled,
out_shape)
self.assertLess(err, 1e-3)
class PlaceholderTest(test.TestCase):
@test_util.run_deprecated_v1
def testDtype(self):
with self.cached_session():
p = array_ops.placeholder(dtypes_lib.float32, shape=(10, 10), name="p")
p_identity = array_ops.identity(p)
feed_array = np.random.rand(10, 10)
self.assertAllClose(
p_identity.eval(feed_dict={p: feed_array}), feed_array)
with self.assertRaisesOpError(
"must feed a value for placeholder tensor 'p' with dtype float"):
self.evaluate(p_identity)
@test_util.run_deprecated_v1
def testShape(self):
with self.cached_session():
p = array_ops.placeholder(dtypes_lib.float32, shape=(10, 10), name="p")
p_identity = array_ops.identity(p)
feed_array = np.random.rand(10, 10)
self.assertAllClose(
p_identity.eval(feed_dict={p: feed_array}), feed_array)
with self.assertRaisesOpError(
"must feed a value for placeholder tensor 'p' with dtype float and "
r"shape \[10,10\]"):
self.evaluate(p_identity)
with self.assertRaisesWithPredicateMatch(
ValueError, lambda e: "Cannot feed value of shape" in str(e)):
p_identity.eval(feed_dict={p: feed_array[:5, :5]})
@test_util.run_deprecated_v1
def testUnknownShape(self):
with self.cached_session():
p = array_ops.placeholder(dtypes_lib.float32, shape=None, name="p")
p_identity = array_ops.identity(p)
# can feed anything
feed_array = np.random.rand(10, 3)
self.assertAllClose(
p_identity.eval(feed_dict={p: feed_array}), feed_array)
feed_array = np.random.rand(4, 2, 5)
self.assertAllClose(
p_identity.eval(feed_dict={p: feed_array}), feed_array)
@test_util.run_deprecated_v1
def testScalarShape(self):
with self.cached_session():
p = array_ops.placeholder(dtypes_lib.float32, shape=[], name="p")
p_identity = array_ops.identity(p)
self.assertAllClose(p_identity.eval(feed_dict={p: 5}), 5)
@test_util.run_deprecated_v1
def testPartialShape(self):
with self.cached_session():
p = array_ops.placeholder(dtypes_lib.float32, shape=[None, 3], name="p")
p_identity = array_ops.identity(p)
feed_array = np.random.rand(10, 3)
self.assertAllClose(
p_identity.eval(feed_dict={p: feed_array}), feed_array)
with self.assertRaisesWithPredicateMatch(
ValueError, lambda e: "Cannot feed value of shape" in str(e)):
p_identity.eval(feed_dict={p: feed_array[:5, :2]})
@test_util.run_deprecated_v1
def testPartialShapeWhenNotFed(self):
with self.cached_session():
p = array_ops.placeholder(dtypes_lib.float32, shape=[None, 3], name="p")
p_identity = array_ops.identity(p)
# Should trigger an operator error, not a shape error.
with self.assertRaisesOpError(
"must feed a value for placeholder tensor 'p' with dtype float"):
self.evaluate(p_identity)
@test_util.run_deprecated_v1
def testControlDependency(self):
with self.cached_session():
p = array_ops.placeholder(dtypes_lib.int32, shape=[], name="p")
with ops.control_dependencies([p]):
c = constant_op.constant(5, dtypes_lib.int32)
d = math_ops.multiply(p, c)
val = np.array(2).astype(np.int)
self.assertEqual(10, d.eval(feed_dict={p: val}))
@test_util.run_deprecated_v1
def testBadShape(self):
with self.assertRaises(ValueError):
array_ops.placeholder(dtypes_lib.float32, shape=(-1, 10))
@test_util.run_deprecated_v1
def testTensorStr(self):
a = array_ops.placeholder(dtypes_lib.float32, shape=None, name="a")
self.assertEqual("<tf.Tensor 'a:0' shape=<unknown> dtype=float32>", repr(a))
b = array_ops.placeholder(dtypes_lib.int32, shape=(32, 40), name="b")
self.assertEqual("<tf.Tensor 'b:0' shape=(32, 40) dtype=int32>", repr(b))
c = array_ops.placeholder(dtypes_lib.qint32, shape=(32, None, 2), name="c")
if c.shape._v2_behavior:
self.assertEqual(
"<tf.Tensor 'c:0' shape=(32, None, 2) dtype=qint32>", repr(c))
else:
self.assertEqual(
"<tf.Tensor 'c:0' shape=(32, ?, 2) dtype=qint32>", repr(c))
@test_util.run_deprecated_v1
def testOldGraph(self):
# Load graph generated from earlier version of TF where
# placeholder shape was not set.
#
# a = tf.compat.v1.placeholder(tf.float32)
# b = a + 1.0
#
# Older graph's default shape is 'shape {}', not 'shape {
# unknown_rank: true }'
graph = """
node {
name: "Placeholder"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
}
}
}
}
node {
name: "add/y"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 1.0
}
}
}
}
node {
name: "add"
op: "Add"
input: "Placeholder"
input: "add/y"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
versions {
producer: 21
}
"""
gdef = graph_pb2.GraphDef()
text_format.Merge(graph, gdef)
with self.cached_session():
p, ret = importer.import_graph_def(
gdef, return_elements=["Placeholder:0", "add:0"])
# Feed in a vector of two elements. Since the producer version
# of 21, a shape of {} is interpreted as "any shape". If
# producer version were 22, then we'd get a shape mismatch
# error.
self.assertAllEqual([2.0, 3.0], ret.eval(feed_dict={p: [1.0, 2.0]}))
class PlaceholderWithDefaultTest(test.TestCase):
@test_util.run_deprecated_v1
def testFullShape(self):
with self.session(force_gpu=test_util.is_gpu_available()):
p = array_ops.placeholder_with_default([[2, 2], [2, 2]], shape=[2, 2])
a = array_ops.identity(p)
self.assertAllEqual([[2, 2], [2, 2]], self.evaluate(a))
self.assertAllEqual(
[[3, 3], [3, 3]], a.eval(feed_dict={p: [[3, 3], [3, 3]]}))
with self.assertRaises(ValueError):
a.eval(feed_dict={p: [[6, 6, 6], [6, 6, 6]]})
@test_util.run_deprecated_v1
def testPartialShape(self):
with self.session(force_gpu=test_util.is_gpu_available()):
p = array_ops.placeholder_with_default([1, 2, 3], shape=[None])
a = array_ops.identity(p)
self.assertAllEqual([1, 2, 3], self.evaluate(a))
self.assertAllEqual([3, 37], a.eval(feed_dict={p: [3, 37]}))
with self.assertRaises(ValueError):
a.eval(feed_dict={p: [[2, 2], [2, 2]]})
@test_util.run_deprecated_v1
def testNoShape(self):
with self.session(force_gpu=test_util.is_gpu_available()):
p = array_ops.placeholder_with_default([17], shape=None)
a = array_ops.identity(p)
self.assertAllEqual([17], self.evaluate(a))
self.assertAllEqual([3, 37], a.eval(feed_dict={p: [3, 37]}))
self.assertAllEqual(
[[3, 3], [3, 3]], a.eval(feed_dict={p: [[3, 3], [3, 3]]}))
@test_util.run_deprecated_v1
def testGradient(self):
with self.session(force_gpu=test_util.is_gpu_available()):
x = array_ops.placeholder(dtypes_lib.float32, [5, 7])
y = array_ops.placeholder_with_default(x, None)
err = gradient_checker.compute_gradient_error(x, [5, 7], y, [5, 7])
self.assertLess(err, 1e-3)
if __name__ == "__main__":
test.main()