158 lines
5.2 KiB
Python
158 lines
5.2 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for tensorflow.ops.argmax_op."""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import functools
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
class ArgMaxTest(test.TestCase):
|
|
|
|
def _testArg(self,
|
|
method,
|
|
x,
|
|
axis,
|
|
expected_values,
|
|
use_gpu=False,
|
|
expected_err_re=None):
|
|
with self.session(use_gpu=use_gpu):
|
|
ans = method(x, axis=axis)
|
|
if expected_err_re is None:
|
|
tf_ans = self.evaluate(ans)
|
|
# Defaults to int64 output.
|
|
self.assertEqual(np.int64, tf_ans.dtype)
|
|
self.assertAllEqual(tf_ans, expected_values)
|
|
self.assertShapeEqual(expected_values, ans)
|
|
else:
|
|
with self.assertRaisesOpError(expected_err_re):
|
|
self.evaluate(ans)
|
|
|
|
def _testBothArg(self,
|
|
method,
|
|
x,
|
|
axis,
|
|
expected_values,
|
|
expected_err_re=None):
|
|
self._testArg(method, x, axis, expected_values, True, expected_err_re)
|
|
# Compilation time is too large with XLA/CPU autojit.
|
|
if not test_util.is_xla_enabled():
|
|
self._testArg(method, x, axis, expected_values, False, expected_err_re)
|
|
|
|
def _testBasic(self, dtype):
|
|
x = np.arange(200, dtype=np.float32).astype(np.bool_).astype(dtype)
|
|
np.random.shuffle(x)
|
|
|
|
# Check that argmin and argmax match numpy along the primary axis
|
|
self._testBothArg(math_ops.argmax, x, 0, x.argmax())
|
|
self._testBothArg(math_ops.argmin, x, 0, x.argmin())
|
|
|
|
def _testTieBreaking(self, dtype):
|
|
x = np.zeros(200, dtype=dtype)
|
|
|
|
# Check that argmin and argmax match numpy along the primary axis for
|
|
# breaking ties.
|
|
self._testBothArg(math_ops.argmax, x, 0, x.argmax())
|
|
self._testBothArg(math_ops.argmin, x, 0, x.argmin())
|
|
|
|
def _testDim(self, dtype):
|
|
shape = (3, 2, 4, 5, 6, 3, 7)
|
|
x = np.arange(
|
|
functools.reduce(lambda x, y: x * y, shape),
|
|
dtype=np.float32).astype(dtype)
|
|
np.random.shuffle(x)
|
|
x = x.reshape(shape)
|
|
|
|
# Check that argmin and argmax match numpy along all axes
|
|
for axis in range(-7, 7):
|
|
self._testBothArg(math_ops.argmax, x, axis, x.argmax(axis))
|
|
self._testBothArg(math_ops.argmin, x, axis, x.argmin(axis))
|
|
|
|
def testFloat(self):
|
|
self._testBasic(np.float32)
|
|
self._testTieBreaking(np.float32)
|
|
self._testDim(np.float32)
|
|
|
|
def testFloatInt32Output(self):
|
|
x = np.asarray(100 * np.random.randn(200), dtype=np.float32)
|
|
expected_values = x.argmax()
|
|
with self.session(use_gpu=True):
|
|
ans = math_ops.argmax(x, axis=0, output_type=dtypes.int32)
|
|
tf_ans = self.evaluate(ans)
|
|
self.assertEqual(np.int32, tf_ans.dtype)
|
|
# The values are equal when comparing int32 to int64 because
|
|
# the values don't have a range that exceeds 32-bit integers.
|
|
self.assertAllEqual(tf_ans, expected_values)
|
|
expected_values = x.argmin()
|
|
with self.session(use_gpu=True):
|
|
ans = math_ops.argmin(x, axis=0, output_type=dtypes.int32)
|
|
tf_ans = self.evaluate(ans)
|
|
self.assertEqual(np.int32, tf_ans.dtype)
|
|
self.assertAllEqual(tf_ans, expected_values)
|
|
|
|
def testDouble(self):
|
|
self._testBasic(np.float64)
|
|
self._testTieBreaking(np.float64)
|
|
self._testDim(np.float64)
|
|
|
|
def testInt32(self):
|
|
self._testBasic(np.int32)
|
|
self._testTieBreaking(np.int32)
|
|
self._testDim(np.int32)
|
|
|
|
def testInt64(self):
|
|
self._testBasic(np.int64)
|
|
self._testTieBreaking(np.int64)
|
|
self._testDim(np.int64)
|
|
|
|
def testBool(self):
|
|
self._testBasic(np.bool_)
|
|
self._testTieBreaking(np.bool_)
|
|
self._testDim(np.bool_)
|
|
|
|
def testEmpty(self):
|
|
with self.cached_session():
|
|
for op in math_ops.argmin, math_ops.argmax:
|
|
with self.assertRaisesOpError(
|
|
r"Reduction axis 0 is empty in shape \[0\]"):
|
|
op([], 0).eval()
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testDefaultAxis(self):
|
|
with self.cached_session():
|
|
for op in math_ops.argmin, math_ops.argmax:
|
|
ans = op([1]).eval()
|
|
self.assertAllEqual(ans, 0)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testOutputEmpty(self):
|
|
with self.cached_session():
|
|
for op in math_ops.argmin, math_ops.argmax:
|
|
ret = op(array_ops.zeros(shape=[1, 0, 2]), axis=-1).eval()
|
|
self.assertEqual(ret.shape, (1, 0))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|