STT-tensorflow/tensorflow/python/keras/tests/model_architectures_test.py
Yanhui Liang 74463d793c Clean up on the model architectures test.
PiperOrigin-RevId: 293891433
Change-Id: Ia4caf5cc793feb6f6f0d697368717000020990eb
2020-02-07 14:11:38 -08:00

110 lines
3.6 KiB
Python

# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=protected-access
"""Tests for saving/loading function for keras Model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import shutil
from absl.testing import parameterized
import numpy as np
from tensorflow.python import keras
from tensorflow.python.keras import keras_parameterized
from tensorflow.python.keras import testing_utils
from tensorflow.python.keras.tests import model_architectures
from tensorflow.python.platform import test
@keras_parameterized.run_with_all_saved_model_formats
class TestModelArchitectures(keras_parameterized.TestCase):
def _save_model_dir(self, dirname='saved_model'):
temp_dir = self.get_temp_dir()
self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True)
return os.path.join(temp_dir, dirname)
def get_test_data(self, input_shape, target_shape):
"""Generate test dataset for testing."""
if isinstance(input_shape, list):
x = [
np.random.random((2,) + input_shape[i][1:])
for i in range(len(input_shape))
]
else:
x = np.random.random((2,) + input_shape[1:])
if isinstance(target_shape, list):
y = [
np.random.random((2,) + target_shape[i][1:])
for i in range(len(target_shape))
]
else:
y = np.random.random((2,) + target_shape[1:])
return x, y
def get_custom_objects(self):
"""Define custom_objects."""
class CustomOpt(keras.optimizers.SGD):
pass
def custom_loss(y_true, y_pred):
return keras.losses.mse(y_true, y_pred)
return {'CustomOpt': CustomOpt,
'custom_loss': custom_loss}
@parameterized.named_parameters(*model_architectures.ALL_MODELS)
def test_basic_saving_and_loading(self, model_fn):
save_format = testing_utils.get_save_format()
custom_objects = self.get_custom_objects()
if 'subclassed_in_functional' in model_fn.__name__:
subclass_custom_objects = {
'MySubclassModel':
model_architectures.MySubclassModel,
}
custom_objects.update(subclass_custom_objects)
elif ('subclassed' in model_fn.__name__ and save_format == 'h5'):
self.skipTest('Saving the model to HDF5 format requires the model to be '
'a Functional model or a Sequential model.')
saved_model_dir = self._save_model_dir()
model_data = model_fn()
model = model_data.model
x_test, y_test = self.get_test_data(
model_data.input_shape, model_data.target_shape)
model.compile('rmsprop', 'mse')
model.train_on_batch(x_test, y_test)
# Save model.
out1 = model.predict(x_test)
keras.models.save_model(model, saved_model_dir, save_format=save_format)
# Load model.
loaded_model = keras.models.load_model(
saved_model_dir,
custom_objects=custom_objects)
out2 = loaded_model.predict(x_test)
self.assertAllClose(out1, out2, atol=1e-05)
if __name__ == '__main__':
test.main()