STT-tensorflow/tensorflow/python/keras/optimizer_v2/gradient_descent.py
Francois Chollet f6302e4ec7 Clean up optimizer docstrings.
PiperOrigin-RevId: 304544799
Change-Id: Ic83206c54cbf8437a4d6ff693f139412b5bdcee8
2020-04-02 22:22:38 -07:00

190 lines
6.9 KiB
Python

# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""SGD optimizer implementation."""
# pylint: disable=g-classes-have-attributes
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.framework import ops
from tensorflow.python.keras.optimizer_v2 import optimizer_v2
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.training import training_ops
from tensorflow.python.util.tf_export import keras_export
@keras_export("keras.optimizers.SGD")
class SGD(optimizer_v2.OptimizerV2):
r"""Gradient descent (with momentum) optimizer.
Update rule for parameter `w` with gradient `g` when `momentum` is 0:
```python
w = w - learning_rate * g
```
Update rule when `momentum` is larger than 0:
```python
velocity = momentum * velocity - learning_rate * g
w = w * velocity
```
When `nesterov=False`, this rule becomes:
```python
velocity = momentum * velocity - learning_rate * g
w = w + momentum * velocity - learning_rate * g
```
Args:
learning_rate: A `Tensor`, floating point value, or a schedule that is a
`tf.keras.optimizers.schedules.LearningRateSchedule`, or a callable
that takes no arguments and returns the actual value to use. The
learning rate. Defaults to 0.01.
momentum: float hyperparameter >= 0 that accelerates gradient descent
in the relevant
direction and dampens oscillations. Defaults to 0, i.e., vanilla gradient
descent.
nesterov: boolean. Whether to apply Nesterov momentum.
Defaults to `False`.
name: Optional name prefix for the operations created when applying
gradients. Defaults to `"SGD"`.
**kwargs: Keyword arguments. Allowed to be one of
`"clipnorm"` or `"clipvalue"`.
`"clipnorm"` (float) clips gradients by norm; `"clipvalue"` (float) clips
gradients by value.
Usage:
>>> opt = tf.keras.optimizers.SGD(learning_rate=0.1)
>>> var = tf.Variable(1.0)
>>> loss = lambda: (var ** 2)/2.0 # d(loss)/d(var1) = var1
>>> step_count = opt.minimize(loss, [var]).numpy()
>>> # Step is `- learning_rate * grad`
>>> var.numpy()
0.9
>>> opt = tf.keras.optimizers.SGD(learning_rate=0.1, momentum=0.9)
>>> var = tf.Variable(1.0)
>>> val0 = var.value()
>>> loss = lambda: (var ** 2)/2.0 # d(loss)/d(var1) = var1
>>> # First step is `- learning_rate * grad`
>>> step_count = opt.minimize(loss, [var]).numpy()
>>> val1 = var.value()
>>> (val0 - val1).numpy()
0.1
>>> # On later steps, step-size increases because of momentum
>>> step_count = opt.minimize(loss, [var]).numpy()
>>> val2 = var.value()
>>> (val1 - val2).numpy()
0.18
Reference:
- For `nesterov=True`, See [Sutskever et al., 2013](
http://jmlr.org/proceedings/papers/v28/sutskever13.pdf).
"""
_HAS_AGGREGATE_GRAD = True
def __init__(self,
learning_rate=0.01,
momentum=0.0,
nesterov=False,
name="SGD",
**kwargs):
super(SGD, self).__init__(name, **kwargs)
self._set_hyper("learning_rate", kwargs.get("lr", learning_rate))
self._set_hyper("decay", self._initial_decay)
self._momentum = False
if isinstance(momentum, ops.Tensor) or callable(momentum) or momentum > 0:
self._momentum = True
if isinstance(momentum, (int, float)) and (momentum < 0 or momentum > 1):
raise ValueError("`momentum` must be between [0, 1].")
self._set_hyper("momentum", momentum)
self.nesterov = nesterov
def _create_slots(self, var_list):
if self._momentum:
for var in var_list:
self.add_slot(var, "momentum")
def _prepare_local(self, var_device, var_dtype, apply_state):
super(SGD, self)._prepare_local(var_device, var_dtype, apply_state)
apply_state[(var_device, var_dtype)]["momentum"] = array_ops.identity(
self._get_hyper("momentum", var_dtype))
def _resource_apply_dense(self, grad, var, apply_state=None):
var_device, var_dtype = var.device, var.dtype.base_dtype
coefficients = ((apply_state or {}).get((var_device, var_dtype))
or self._fallback_apply_state(var_device, var_dtype))
if self._momentum:
momentum_var = self.get_slot(var, "momentum")
return training_ops.resource_apply_keras_momentum(
var.handle,
momentum_var.handle,
coefficients["lr_t"],
grad,
coefficients["momentum"],
use_locking=self._use_locking,
use_nesterov=self.nesterov)
else:
return training_ops.resource_apply_gradient_descent(
var.handle, coefficients["lr_t"], grad, use_locking=self._use_locking)
def _resource_apply_sparse_duplicate_indices(self, grad, var, indices,
**kwargs):
if self._momentum:
return super(SGD, self)._resource_apply_sparse_duplicate_indices(
grad, var, indices, **kwargs)
else:
var_device, var_dtype = var.device, var.dtype.base_dtype
coefficients = (kwargs.get("apply_state", {}).get((var_device, var_dtype))
or self._fallback_apply_state(var_device, var_dtype))
return resource_variable_ops.resource_scatter_add(
var.handle, indices, -grad * coefficients["lr_t"])
def _resource_apply_sparse(self, grad, var, indices, apply_state=None):
# This method is only needed for momentum optimization.
var_device, var_dtype = var.device, var.dtype.base_dtype
coefficients = ((apply_state or {}).get((var_device, var_dtype))
or self._fallback_apply_state(var_device, var_dtype))
momentum_var = self.get_slot(var, "momentum")
return training_ops.resource_sparse_apply_keras_momentum(
var.handle,
momentum_var.handle,
coefficients["lr_t"],
grad,
indices,
coefficients["momentum"],
use_locking=self._use_locking,
use_nesterov=self.nesterov)
def get_config(self):
config = super(SGD, self).get_config()
config.update({
"learning_rate": self._serialize_hyperparameter("learning_rate"),
"decay": self._serialize_hyperparameter("decay"),
"momentum": self._serialize_hyperparameter("momentum"),
"nesterov": self.nesterov,
})
return config