The experimental_run_tf_function parameter no longer has any effect. I didn't remove the functionality from testing_util.py and keras_parameterized.py to run with experimental_run_tf_function being True and False. I will remove that functionality in a future change. PiperOrigin-RevId: 297674422 Change-Id: I5b1e67f78b4c3b60242241fb4dc2018f0ace6013
106 lines
4.0 KiB
Python
106 lines
4.0 KiB
Python
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for advanced activation layers."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.python import keras
|
|
from tensorflow.python.eager import context
|
|
from tensorflow.python.keras import keras_parameterized
|
|
from tensorflow.python.keras import testing_utils
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
@keras_parameterized.run_all_keras_modes
|
|
class AdvancedActivationsTest(keras_parameterized.TestCase):
|
|
|
|
def test_leaky_relu(self):
|
|
for alpha in [0., .5, -1.]:
|
|
testing_utils.layer_test(keras.layers.LeakyReLU,
|
|
kwargs={'alpha': alpha},
|
|
input_shape=(2, 3, 4))
|
|
|
|
def test_prelu(self):
|
|
testing_utils.layer_test(keras.layers.PReLU, kwargs={},
|
|
input_shape=(2, 3, 4))
|
|
|
|
def test_prelu_share(self):
|
|
testing_utils.layer_test(keras.layers.PReLU,
|
|
kwargs={'shared_axes': 1},
|
|
input_shape=(2, 3, 4))
|
|
|
|
def test_elu(self):
|
|
for alpha in [0., .5, -1.]:
|
|
testing_utils.layer_test(keras.layers.ELU,
|
|
kwargs={'alpha': alpha},
|
|
input_shape=(2, 3, 4))
|
|
|
|
def test_thresholded_relu(self):
|
|
testing_utils.layer_test(keras.layers.ThresholdedReLU,
|
|
kwargs={'theta': 0.5},
|
|
input_shape=(2, 3, 4))
|
|
|
|
def test_softmax(self):
|
|
testing_utils.layer_test(keras.layers.Softmax,
|
|
kwargs={'axis': 1},
|
|
input_shape=(2, 3, 4))
|
|
|
|
def test_relu(self):
|
|
testing_utils.layer_test(keras.layers.ReLU,
|
|
kwargs={'max_value': 10},
|
|
input_shape=(2, 3, 4))
|
|
x = keras.backend.ones((3, 4))
|
|
if not context.executing_eagerly():
|
|
# Test that we use `leaky_relu` when appropriate in graph mode.
|
|
self.assertTrue(
|
|
'LeakyRelu' in keras.layers.ReLU(negative_slope=0.2)(x).name)
|
|
# Test that we use `relu` when appropriate in graph mode.
|
|
self.assertTrue('Relu' in keras.layers.ReLU()(x).name)
|
|
# Test that we use `relu6` when appropriate in graph mode.
|
|
self.assertTrue('Relu6' in keras.layers.ReLU(max_value=6)(x).name)
|
|
|
|
def test_relu_with_invalid_arg(self):
|
|
with self.assertRaisesRegexp(
|
|
ValueError, 'max_value of Relu layer cannot be negative value: -10'):
|
|
testing_utils.layer_test(keras.layers.ReLU,
|
|
kwargs={'max_value': -10},
|
|
input_shape=(2, 3, 4))
|
|
with self.assertRaisesRegexp(
|
|
ValueError,
|
|
'negative_slope of Relu layer cannot be negative value: -2'):
|
|
with self.cached_session():
|
|
testing_utils.layer_test(
|
|
keras.layers.ReLU,
|
|
kwargs={'negative_slope': -2},
|
|
input_shape=(2, 3, 4))
|
|
|
|
@keras_parameterized.run_with_all_model_types
|
|
def test_layer_as_activation(self):
|
|
layer = keras.layers.Dense(1, activation=keras.layers.ReLU())
|
|
model = testing_utils.get_model_from_layers([layer], input_shape=(10,))
|
|
model.compile(
|
|
'sgd',
|
|
'mse',
|
|
run_eagerly=testing_utils.should_run_eagerly())
|
|
model.fit(np.ones((10, 10)), np.ones((10, 1)), batch_size=2)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test.main()
|