STT-tensorflow/tensorflow/python/keras/layers/advanced_activations_test.py
Reed Wanderman-Milne b7014702fd Remove passing experimental_run_tf_function in most tests.
The experimental_run_tf_function parameter no longer has any effect.

I didn't remove the functionality from testing_util.py and keras_parameterized.py to run with experimental_run_tf_function being True and False. I will remove that functionality in a future change.

PiperOrigin-RevId: 297674422
Change-Id: I5b1e67f78b4c3b60242241fb4dc2018f0ace6013
2020-02-27 13:34:09 -08:00

106 lines
4.0 KiB
Python

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for advanced activation layers."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python import keras
from tensorflow.python.eager import context
from tensorflow.python.keras import keras_parameterized
from tensorflow.python.keras import testing_utils
from tensorflow.python.platform import test
@keras_parameterized.run_all_keras_modes
class AdvancedActivationsTest(keras_parameterized.TestCase):
def test_leaky_relu(self):
for alpha in [0., .5, -1.]:
testing_utils.layer_test(keras.layers.LeakyReLU,
kwargs={'alpha': alpha},
input_shape=(2, 3, 4))
def test_prelu(self):
testing_utils.layer_test(keras.layers.PReLU, kwargs={},
input_shape=(2, 3, 4))
def test_prelu_share(self):
testing_utils.layer_test(keras.layers.PReLU,
kwargs={'shared_axes': 1},
input_shape=(2, 3, 4))
def test_elu(self):
for alpha in [0., .5, -1.]:
testing_utils.layer_test(keras.layers.ELU,
kwargs={'alpha': alpha},
input_shape=(2, 3, 4))
def test_thresholded_relu(self):
testing_utils.layer_test(keras.layers.ThresholdedReLU,
kwargs={'theta': 0.5},
input_shape=(2, 3, 4))
def test_softmax(self):
testing_utils.layer_test(keras.layers.Softmax,
kwargs={'axis': 1},
input_shape=(2, 3, 4))
def test_relu(self):
testing_utils.layer_test(keras.layers.ReLU,
kwargs={'max_value': 10},
input_shape=(2, 3, 4))
x = keras.backend.ones((3, 4))
if not context.executing_eagerly():
# Test that we use `leaky_relu` when appropriate in graph mode.
self.assertTrue(
'LeakyRelu' in keras.layers.ReLU(negative_slope=0.2)(x).name)
# Test that we use `relu` when appropriate in graph mode.
self.assertTrue('Relu' in keras.layers.ReLU()(x).name)
# Test that we use `relu6` when appropriate in graph mode.
self.assertTrue('Relu6' in keras.layers.ReLU(max_value=6)(x).name)
def test_relu_with_invalid_arg(self):
with self.assertRaisesRegexp(
ValueError, 'max_value of Relu layer cannot be negative value: -10'):
testing_utils.layer_test(keras.layers.ReLU,
kwargs={'max_value': -10},
input_shape=(2, 3, 4))
with self.assertRaisesRegexp(
ValueError,
'negative_slope of Relu layer cannot be negative value: -2'):
with self.cached_session():
testing_utils.layer_test(
keras.layers.ReLU,
kwargs={'negative_slope': -2},
input_shape=(2, 3, 4))
@keras_parameterized.run_with_all_model_types
def test_layer_as_activation(self):
layer = keras.layers.Dense(1, activation=keras.layers.ReLU())
model = testing_utils.get_model_from_layers([layer], input_shape=(10,))
model.compile(
'sgd',
'mse',
run_eagerly=testing_utils.should_run_eagerly())
model.fit(np.ones((10, 10)), np.ones((10, 1)), batch_size=2)
if __name__ == '__main__':
test.main()