STT-tensorflow/tensorflow/python/framework/registry.py
Sergei Lebedev 2917ad1d24 Ported tf_stack.extract_stack to C++
This change also removes extract_stack_file_and_line because extract_stack
is now efficient enough to be used ~everywhere.

def f(n, callback):
  if n == 0:
    return callback()
  else:
    return f(n - 1, callback)

>>> %timeit f(16, lambda: None)  # Baseline
1000000 loops, best of 3: 1.09 ?s per loop

Before:

>>> %timeit f(16, tf_stack.extract_stack_file_and_line)
100000 loops, best of 3: 17.7 ?s per loop
>>> %timeit f(16, tf_stack.extract_stack)
100000 loops, best of 3: 18.5 ?s per loop

After:

>>> %timeit f(16, tf_stack.extract_stack)
100000 loops, best of 3: 3.89 ?s per loop

PiperOrigin-RevId: 263784818
2019-08-16 09:37:31 -07:00

98 lines
3.2 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Registry mechanism for "registering" classes/functions for general use.
This is typically used with a decorator that calls Register for adding
a class or function to a registry.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util import compat
from tensorflow.python.util import tf_stack
# Registry mechanism below is based on mapreduce.python.mrpython.Register.
_LOCATION_TAG = "location"
_TYPE_TAG = "type"
class Registry(object):
"""Provides a registry for saving objects."""
def __init__(self, name):
"""Creates a new registry."""
self._name = name
self._registry = {}
def register(self, candidate, name=None):
"""Registers a Python object "candidate" for the given "name".
Args:
candidate: The candidate object to add to the registry.
name: An optional string specifying the registry key for the candidate.
If None, candidate.__name__ will be used.
Raises:
KeyError: If same name is used twice.
"""
if not name:
name = candidate.__name__
if name in self._registry:
frame = self._registry[name][_LOCATION_TAG]
raise KeyError(
"Registering two %s with name '%s'! "
"(Previous registration was in %s %s:%d)" %
(self._name, name, frame.name, frame.filename, frame.lineno))
logging.vlog(1, "Registering %s (%s) in %s.", name, candidate, self._name)
# stack trace is [this_function, Register(), user_function,...]
# so the user function is #2.
stack = tf_stack.extract_stack(limit=3)
stack_index = min(2, len(stack)-1)
if stack_index >= 0:
location_tag = stack[stack_index]
else:
location_tag = ("UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN")
self._registry[name] = {_TYPE_TAG: candidate, _LOCATION_TAG: location_tag}
def list(self):
"""Lists registered items.
Returns:
A list of names of registered objects.
"""
return self._registry.keys()
def lookup(self, name):
"""Looks up "name".
Args:
name: a string specifying the registry key for the candidate.
Returns:
Registered object if found
Raises:
LookupError: if "name" has not been registered.
"""
name = compat.as_str(name)
if name in self._registry:
return self._registry[name][_TYPE_TAG]
else:
raise LookupError(
"%s registry has no entry for: %s" % (self._name, name))