202 lines
6.6 KiB
Python
202 lines
6.6 KiB
Python
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
r"""Benchmarks for remote worker eager execution.
|
|
|
|
To run CPU benchmarks:
|
|
bazel run -c opt remote_benchmarks_test -- --benchmarks=.
|
|
|
|
To run GPU benchmarks:
|
|
bazel run --config=cuda -c opt --copt="-mavx" remote_benchmarks_test -- \
|
|
--benchmarks=.
|
|
"""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import gc
|
|
import time
|
|
|
|
from six.moves import xrange # pylint: disable=redefined-builtin
|
|
|
|
from tensorflow.python.eager import context
|
|
from tensorflow.python.eager import def_function
|
|
from tensorflow.python.eager import remote
|
|
from tensorflow.python.eager import test
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.ops import random_ops
|
|
from tensorflow.python.ops import variables
|
|
from tensorflow.python.training import server_lib
|
|
|
|
|
|
def run_benchmark(func, num_iters, execution_mode=None):
|
|
ctx = context.context()
|
|
with context.execution_mode(execution_mode):
|
|
# call func to maybe warm up the GPU
|
|
func()
|
|
if execution_mode == context.ASYNC:
|
|
ctx.executor.wait()
|
|
start = time.time()
|
|
for _ in xrange(num_iters):
|
|
func()
|
|
if execution_mode == context.ASYNC:
|
|
ctx.executor.wait()
|
|
end = time.time()
|
|
|
|
return end - start
|
|
|
|
|
|
class Foo(object):
|
|
|
|
def __init__(self, num_vars):
|
|
self._num_vars = num_vars
|
|
self._v = []
|
|
|
|
def __call__(self, inputs):
|
|
if not self._v:
|
|
for _ in range(self._num_vars):
|
|
self._v.append(variables.Variable(
|
|
random_ops.random_uniform([]), shape=[]))
|
|
for v in self._v:
|
|
inputs = inputs * v
|
|
return inputs
|
|
|
|
|
|
class RemoteWorkerMicroBenchmarks(test.Benchmark):
|
|
|
|
def __init__(self):
|
|
# used for remote benchmarks
|
|
self._cached_server1 = server_lib.Server.create_local_server()
|
|
self._cached_server_target1 = self._cached_server1.target[len("grpc://"):]
|
|
self._cached_server2 = server_lib.Server.create_local_server()
|
|
self._cached_server_target2 = self._cached_server2.target[len("grpc://"):]
|
|
|
|
def _run(self, func, num_iters=1000, execution_mode=context.ASYNC):
|
|
total_time = run_benchmark(func, num_iters, execution_mode)
|
|
mean_us = total_time * 1e6 / num_iters
|
|
self.report_benchmark(
|
|
iters=num_iters,
|
|
wall_time=mean_us,
|
|
extras={"examples_per_sec": num_iters / total_time})
|
|
|
|
def benchmark_send_mirroring_off(self):
|
|
remote.connect_to_remote_host(self._cached_server_target1)
|
|
|
|
x = random_ops.random_uniform((2, 2)).cpu()
|
|
|
|
@def_function.function
|
|
def remote_func(m):
|
|
return math_ops.matmul(m, m)
|
|
|
|
def func(m):
|
|
with ops.device("job:worker/replica:0/task:0/device:CPU:0"):
|
|
return remote_func(m)
|
|
|
|
context.context().mirroring_policy = context.MIRRORING_NONE
|
|
self._run(lambda: func(x))
|
|
# NOTE(b/136184459): Force garbage collecting hanging resources before
|
|
# subsequent calls to set_server_def, to ensure the destroy resource ops are
|
|
# executed when their corresponding device and manager are still available.
|
|
gc.collect()
|
|
|
|
def benchmark_send_mirroring_on(self):
|
|
remote.connect_to_remote_host(self._cached_server_target1)
|
|
|
|
x = random_ops.random_uniform((2, 2)).cpu()
|
|
|
|
@def_function.function
|
|
def remote_func(m):
|
|
return math_ops.matmul(m, m)
|
|
|
|
def func(m):
|
|
with ops.device("job:worker/replica:0/task:0/device:CPU:0"):
|
|
return remote_func(m)
|
|
|
|
context.context().mirroring_policy = context.MIRRORING_ALL
|
|
self._run(lambda: func(x))
|
|
# NOTE(b/136184459): Force garbage collecting hanging resources before
|
|
# subsequent calls to set_server_def, to ensure the destroy resource ops are
|
|
# executed when their corresponding device and manager are still available.
|
|
gc.collect()
|
|
|
|
def benchmark_worker_mirroring_off(self):
|
|
remote.connect_to_remote_host(
|
|
[self._cached_server_target1, self._cached_server_target2])
|
|
|
|
with ops.device("job:worker/replica:0/task:1/device:CPU:0"):
|
|
v = variables.Variable(1.0)
|
|
|
|
@def_function.function
|
|
def remote_func():
|
|
return 1.0 + v
|
|
|
|
def func():
|
|
with ops.device("job:worker/replica:0/task:0/device:CPU:0"):
|
|
return remote_func()
|
|
|
|
context.context().mirroring_policy = context.MIRRORING_NONE
|
|
self._run(func)
|
|
# NOTE(b/136184459): Force garbage collecting hanging resources before
|
|
# subsequent calls to set_server_def, to ensure the destroy resource ops are
|
|
# executed when their corresponding device and manager are still available.
|
|
gc.collect()
|
|
|
|
def benchmark_worker_mirroring_on(self):
|
|
remote.connect_to_remote_host(
|
|
[self._cached_server_target1, self._cached_server_target2])
|
|
|
|
with ops.device("job:worker/replica:0/task:1/device:CPU:0"):
|
|
v = variables.Variable(1.0)
|
|
|
|
@def_function.function
|
|
def remote_func():
|
|
return 1.0 + v
|
|
|
|
def func():
|
|
with ops.device("job:worker/replica:0/task:0/device:CPU:0"):
|
|
return remote_func()
|
|
|
|
context.context().mirroring_policy = context.MIRRORING_ALL
|
|
self._run(func)
|
|
# NOTE(b/136184459): Force garbage collecting hanging resources before
|
|
# subsequent calls to set_server_def, to ensure the destroy resource ops are
|
|
# executed when their corresponding device and manager are still available.
|
|
gc.collect()
|
|
|
|
def benchmark_create_vars_inside_function(self):
|
|
remote.connect_to_remote_host(self._cached_server_target1)
|
|
|
|
def func():
|
|
with ops.device("job:worker/replica:0/task:0/device:CPU:0"):
|
|
layer = Foo(50)
|
|
|
|
@def_function.function
|
|
def remote_func():
|
|
with ops.device("job:worker/replica:0/task:0/device:CPU:0"):
|
|
return layer(random_ops.random_uniform([]))
|
|
|
|
return remote_func()
|
|
|
|
self._run(func, execution_mode=context.ASYNC, num_iters=100)
|
|
# NOTE(b/136184459): Force garbage collecting hanging resources before
|
|
# subsequent calls to set_server_def, to ensure the destroy resource ops are
|
|
# executed when their corresponding device and manager are still available.
|
|
gc.collect()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|