STT-tensorflow/tensorflow/python/distribute/zero_batch_test.py
A. Unique TensorFlower 2e23d38ce7 Fix input size used for batch normalization.
Inputs_size (array_ops.size()) used to determine whether to use optional_get_next() API code path defaults to using int32 dtype. If input size is big enough this can lead to integer overflow and cause model to diverge.

Correct usage will be to use inputs.get_shape()[0] to get the batch size -- instead of using array_ops.size() which returns the number of elements in inputs tensor which can be arbitrarily large.

PiperOrigin-RevId: 305823718
Change-Id: Idc5660d80406fe233b162b73330c6fce4d5357b4
2020-04-09 22:01:21 -07:00

212 lines
8.2 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test DistributionStrategy in the zero batch case."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
import numpy as np
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations
from tensorflow.python.eager import backprop
from tensorflow.python.eager import def_function
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.layers import normalization
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import variables
from tensorflow.python.ops.losses import losses
from tensorflow.python.platform import test
from tensorflow.python.training import gradient_descent
class NormalizationTest(test.TestCase, parameterized.TestCase):
@combinations.generate(
combinations.combine(
distribution=[
strategy_combinations.one_device_strategy,
],
mode=["graph"],
fused=[True, False]))
def testBNWithZeroBatchInputGraph(self, distribution, fused):
distribution.extended.experimental_enable_get_next_as_optional = True
with distribution.scope(), self.cached_session() as sess:
bn_list = []
inputs = np.random.random((0, 4, 4, 3)) + 100
targets = np.random.random((0, 4, 4, 3))
inputs_placeholder = array_ops.placeholder(
dtype=dtypes.float32, shape=[None, 4, 4, 3])
targets_placeholder = array_ops.placeholder(
dtype=dtypes.float32, shape=[None, 4, 4, 3])
def step_fn(is_training, inputs, targets=None):
bn = normalization.BatchNormalization(
axis=3, epsilon=1e-3, momentum=0.9, fused=fused)
bn_list.append(bn)
outputs = bn.apply(inputs, training=is_training)
if not is_training:
return outputs
loss = losses.mean_squared_error(targets, outputs)
optimizer = gradient_descent.GradientDescentOptimizer(0.01)
train_op = optimizer.minimize(loss)
with ops.control_dependencies([train_op]):
return array_ops.identity(loss)
train_op = distribution.extended.call_for_each_replica(
step_fn, args=(True, inputs_placeholder, targets_placeholder))
predict_op = distribution.extended.call_for_each_replica(
step_fn, args=(False, inputs_placeholder))
bn = bn_list[0]
self.evaluate(variables.global_variables_initializer())
# Check for initial statistics and weights.
moving_mean, moving_var = self.evaluate(
[bn.moving_mean, bn.moving_variance])
self.assertAllEqual([0, 0, 0], moving_mean)
self.assertAllEqual([1, 1, 1], moving_var)
np_gamma, np_beta = self.evaluate([bn.gamma, bn.beta])
self.assertAllEqual([1, 1, 1], np_gamma)
self.assertAllEqual([0, 0, 0], np_beta)
for _ in range(100):
np_output, _, _ = sess.run([train_op] + bn.updates, {
inputs_placeholder: inputs,
targets_placeholder: targets
})
self.assertEqual(0.0, np_output)
# Verify that the statistics and weights are not changed after training.
moving_mean, moving_var = self.evaluate(
[bn.moving_mean, bn.moving_variance])
self.assertAllEqual([0, 0, 0], moving_mean)
self.assertAllEqual([1, 1, 1], moving_var)
np_gamma, np_beta = self.evaluate([bn.gamma, bn.beta])
self.assertAllEqual([1, 1, 1], np_gamma)
self.assertAllEqual([0, 0, 0], np_beta)
# Test inference.
np_output = sess.run(predict_op, {inputs_placeholder: inputs})
self.assertEqual([], np_output.tolist())
@combinations.generate(
combinations.combine(
distribution=[
strategy_combinations.one_device_strategy,
],
mode=["eager"],
fused=[True, False]))
def testBNWithZeroBatchInput(self, distribution, fused):
distribution.extended.experimental_enable_get_next_as_optional = True
with distribution.scope():
inputs = np.random.random((0, 4, 4, 3)).astype(np.float32) + 100
targets = np.random.random((0, 4, 4, 3)).astype(np.float32)
bn = normalization.BatchNormalization(
axis=3, epsilon=1e-3, momentum=0.9, fused=fused)
optimizer = gradient_descent.GradientDescentOptimizer(0.01)
@def_function.function
def train_step():
def step_fn(inputs, targets):
with backprop.GradientTape() as tape:
outputs = bn.apply(inputs, training=True)
loss = losses.mean_squared_error(targets, outputs)
grads = tape.gradient(loss, bn.variables)
optimizer.apply_gradients(zip(grads, bn.variables))
return loss
return distribution.run(step_fn, args=(inputs, targets))
for _ in range(100):
np_output = train_step().numpy()
self.assertEqual(0.0, np_output)
# Verify that the statistics and weights are not changed after training.
self.assertAllEqual([0, 0, 0], bn.moving_mean.numpy())
self.assertAllEqual([1, 1, 1], bn.moving_variance.numpy())
self.assertAllEqual([1, 1, 1], bn.gamma.numpy())
self.assertAllEqual([0, 0, 0], bn.beta.numpy())
@def_function.function
def test_step():
def step_fn(inputs):
outputs = bn.apply(inputs, training=False)
return outputs
return distribution.run(step_fn, args=(inputs,))
# Test inference.
self.assertAllEqual(np.zeros(shape=(0, 4, 4, 3), dtype=np.float32),
test_step().numpy())
@combinations.generate(
combinations.combine(
distribution=[
strategy_combinations.one_device_strategy,
],
mode=["eager"],
fused=[True, False]))
def testBNWithDynamicBatchInputEager(self, distribution, fused):
distribution.extended.experimental_enable_get_next_as_optional = True
with distribution.scope():
# Explicitly create dataset with drop_remainder=False.
# This would make batch size unknown.
inputs = np.random.random((11, 4, 4, 3)).astype(np.float32) + 100
targets = np.random.random((11, 4, 4, 3)).astype(np.float32)
dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets)).batch(
10, drop_remainder=False).repeat()
dataset_iterator = iter(
distribution.experimental_distribute_dataset(dataset))
bn = normalization.BatchNormalization(
axis=-1, epsilon=1e-3, momentum=0.9, fused=fused)
optimizer = gradient_descent.GradientDescentOptimizer(0.01)
@def_function.function
def train_step(iterator):
def step_fn(inputs):
features, targets = inputs
with backprop.GradientTape() as tape:
outputs = bn(features, training=True)
loss = losses.mean_squared_error(targets, outputs)
grads = tape.gradient(loss, bn.variables)
optimizer.apply_gradients(zip(grads, bn.variables))
return loss
return distribution.run(step_fn, args=(next(iterator),))
for _ in range(100):
train_step(dataset_iterator).numpy()
# Verify that the statistics and weights are updated.
self.assertNotAllEqual(np.ndarray([0, 0, 0]), bn.moving_mean.numpy())
self.assertNotAllEqual(np.ndarray([1, 1, 1]), bn.moving_variance.numpy())
self.assertNotAllEqual(np.ndarray([1, 1, 1]), bn.gamma.numpy())
self.assertNotAllEqual(np.ndarray([0, 0, 0]), bn.beta.numpy())
if __name__ == "__main__":
test.main()