STT-tensorflow/tensorflow/python/distribute/saved_model_test_base.py
Yujing Zhang 7e6e549c46 Support packed variable in DistributedVariable. Add an option to enable packed variable in TPUStrategy.
PiperOrigin-RevId: 317234665
Change-Id: I09e806cb8261815cd87a6d98817556dd8f7e8ed7
2020-06-18 20:12:02 -07:00

277 lines
9.8 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Base class for testing saving/loading with DS."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl.testing import parameterized
import numpy as np
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import model_combinations
from tensorflow.python.distribute import strategy_combinations
from tensorflow.python.eager import test
from tensorflow.python.framework import random_seed
from tensorflow.python.ops import array_ops
from tensorflow.python.saved_model import saved_model
_RANDOM_SEED = 1337
_DEFAULT_FUNCTION_KEY = 'serving_default'
_TOLERANCE = 1e-30
# TPU uses bfloat16 for computation in hardware underlying, so it has less
# precision than CPU/GPU.
_TPU_TOLERANCE = 1e-7
PREDICT_STEPS = 1
simple_models = [
model_combinations.simple_functional_model,
model_combinations.simple_sequential_model,
model_combinations.simple_subclass_model,
]
strategies = [
strategy_combinations.default_strategy,
strategy_combinations.one_device_strategy,
strategy_combinations.one_device_strategy_gpu,
strategy_combinations.mirrored_strategy_with_one_cpu,
strategy_combinations.mirrored_strategy_with_one_gpu,
strategy_combinations.mirrored_strategy_with_gpu_and_cpu,
strategy_combinations.mirrored_strategy_with_two_gpus,
strategy_combinations.tpu_strategy,
strategy_combinations.tpu_strategy_packed_var,
strategy_combinations.central_storage_strategy_with_two_gpus,
]
def is_tpu_strategy(distribution):
return (distribution is not None and
distribution.__class__.__name__.startswith('TPUStrategy'))
def get_tolerance(save_distribution, restore_distribution):
if is_tpu_strategy(save_distribution) or is_tpu_strategy(
restore_distribution):
return _TPU_TOLERANCE
return _TOLERANCE
def simple_models_with_strategies():
return combinations.combine(
model_and_input=simple_models,
distribution=strategies,
mode=['eager'])
def simple_models_with_strategy_pairs():
return combinations.combine(
model_and_input=simple_models,
distribution_for_saving=strategies,
distribution_for_restoring=strategies,
mode=['eager'])
def tfmodule_models_with_strategies():
return combinations.combine(
model_and_input=[model_combinations.simple_tfmodule_model],
distribution=strategies,
mode=['eager'])
def tfmodule_models_with_strategy_pairs():
return combinations.combine(
model_and_input=[model_combinations.simple_tfmodule_model],
distribution_for_saving=strategies,
distribution_for_restoring=strategies,
mode=['eager'])
def load_and_run_with_saved_model_api(distribution, saved_dir, predict_dataset,
output_name):
"""Loads a saved_model using tf.saved_model API, and runs it."""
func = saved_model.load(saved_dir)
if distribution:
dist_predict_dataset = distribution.experimental_distribute_dataset(
predict_dataset)
per_replica_predict_data = next(iter(dist_predict_dataset))
result = distribution.run(
func.signatures[_DEFAULT_FUNCTION_KEY],
args=(per_replica_predict_data,))
result = result[output_name]
# Convert the per_replica value to a list, then concatenate them
reduced = distribution.experimental_local_results(result)
concat = array_ops.concat(reduced, 0)
return concat
else:
result = func.signatures[_DEFAULT_FUNCTION_KEY](next(iter(predict_dataset)))
return result[output_name]
class TestSavedModelBase(test.TestCase, parameterized.TestCase):
"""Base class for testing saving/loading with DS."""
def setUp(self):
np.random.seed(_RANDOM_SEED)
random_seed.set_random_seed(_RANDOM_SEED)
self._root_dir = 'base'
super(TestSavedModelBase, self).setUp()
def _save_model(self, model, saved_dir):
"""Save the given model to the given saved_dir.
This method needs to be implemented by the subclasses.
Args:
model: a keras model object to save.
saved_dir: a string representing the path to save the keras model
"""
raise NotImplementedError('must be implemented in descendants')
def _load_and_run_model(self,
distribution,
saved_dir,
predict_dataset,
output_name='output_1'):
"""Load the model and run 1 step of predict with it.
This method must be implemented by the subclasses.
Args:
distribution: the distribution strategy used to load the model. None if no
distribution strategy is used
saved_dir: the string representing the path where the model is saved.
predict_dataset: the data used to do the predict on the model for
cross_replica context.
output_name: the string representing the name of the output layer of the
model.
"""
raise NotImplementedError('must be implemented in descendants')
def _train_model(self, model, x_train, y_train, batch_size):
training_dataset = dataset_ops.Dataset.from_tensor_slices(
(x_train, y_train))
training_dataset = training_dataset.repeat()
training_dataset = training_dataset.batch(batch_size)
# Train the model for 1 epoch
model.fit(x=training_dataset, epochs=1, steps_per_epoch=100)
def _predict_with_model(self, distribution, model, predict_dataset):
return model.predict(predict_dataset, steps=PREDICT_STEPS)
def _get_predict_dataset(self, x_predict, batch_size):
predict_dataset = dataset_ops.Dataset.from_tensor_slices(x_predict)
predict_dataset = predict_dataset.repeat()
predict_dataset = predict_dataset.batch(batch_size)
return predict_dataset
def run_test_save_no_strategy_restore_strategy(self, model_and_input,
distribution):
"""Save a model without DS, and restore it with DS."""
saved_dir = os.path.join(self.get_temp_dir(), '0')
model = model_and_input.get_model()
x_train, y_train, x_predict = model_and_input.get_data()
batch_size = model_and_input.get_batch_size()
predict_dataset = self._get_predict_dataset(x_predict, batch_size)
self._train_model(model, x_train, y_train, batch_size)
result_before_save = self._predict_with_model(None, model, predict_dataset)
self._save_model(model, saved_dir)
with distribution.scope():
result_after_save = self._load_and_run_model(
distribution=distribution,
saved_dir=saved_dir,
predict_dataset=predict_dataset)
tolerance = get_tolerance(None, distribution)
self.assertAllClose(result_before_save, result_after_save, atol=tolerance)
def run_test_save_strategy_restore_no_strategy(self, model_and_input,
distribution, save_in_scope):
"""Save a model with DS, and restore it without DS."""
saved_dir = os.path.join(self.get_temp_dir(), '1')
with distribution.scope():
model = model_and_input.get_model()
x_train, y_train, x_predict = model_and_input.get_data()
batch_size = model_and_input.get_batch_size()
self._train_model(model, x_train, y_train, batch_size)
predict_dataset = self._get_predict_dataset(x_predict, batch_size)
result_before_save = self._predict_with_model(
distribution, model, predict_dataset)
if save_in_scope:
with distribution.scope():
self._save_model(model, saved_dir)
else:
self._save_model(model, saved_dir)
load_result = self._load_and_run_model(
distribution=None,
saved_dir=saved_dir,
predict_dataset=predict_dataset)
tolerance = get_tolerance(distribution, None)
self.assertAllClose(result_before_save, load_result, atol=tolerance)
def run_test_save_strategy_restore_strategy(self, model_and_input,
distribution_for_saving,
distribution_for_restoring,
save_in_scope):
"""Save a model with DS, and restore it with potentially different DS."""
saved_dir = os.path.join(self.get_temp_dir(), '2')
with distribution_for_saving.scope():
model = model_and_input.get_model()
x_train, y_train, x_predict = model_and_input.get_data()
batch_size = model_and_input.get_batch_size()
self._train_model(model, x_train, y_train, batch_size)
predict_dataset = self._get_predict_dataset(x_predict, batch_size)
result_before_save = self._predict_with_model(
distribution_for_saving, model, predict_dataset)
if save_in_scope:
with distribution_for_saving.scope():
self._save_model(model, saved_dir)
else:
self._save_model(model, saved_dir)
with distribution_for_restoring.scope():
load_result = self._load_and_run_model(
distribution=distribution_for_restoring,
saved_dir=saved_dir,
predict_dataset=predict_dataset)
tolerance = get_tolerance(distribution_for_saving,
distribution_for_restoring)
self.assertAllClose(result_before_save, load_result, atol=tolerance)