STT-tensorflow/tensorflow/python/distribute/one_device_strategy_test.py
Anjali Sridhar 0c44461c7c Create a DistributedDataset/DistributedDatasetV1 based on TF2/1.x mode.
PiperOrigin-RevId: 306391431
Change-Id: Ib4585c757e2770e0eb9ce5692af8a837a609602c
2020-04-14 01:06:49 -07:00

140 lines
5.2 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for class OneDeviceStrategy."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python import tf2
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations
from tensorflow.python.distribute import strategy_test_lib
from tensorflow.python.eager import context
from tensorflow.python.eager import test
@combinations.generate(
combinations.combine(
distribution=[
strategy_combinations.one_device_strategy,
strategy_combinations.one_device_strategy_gpu
],
mode=["eager", "graph"]))
class OneDeviceStrategyTest(
strategy_test_lib.DistributionTestBase,
strategy_test_lib.OneDeviceDistributionTestBase):
def testMinimizeLoss(self, distribution):
if context.executing_eagerly():
self._test_minimize_loss_eager(distribution)
else:
self._test_minimize_loss_graph(distribution)
def testReplicaId(self, distribution):
self._test_replica_id(distribution)
def testCallAndMergeExceptions(self, distribution):
self._test_call_and_merge_exceptions(distribution)
def testReplicateDataset(self, distribution):
if tf2.enabled() and not context.executing_eagerly():
self.skipTest("Skipping test since we do not support graph mode in TF 2")
dataset_fn = lambda: dataset_ops.Dataset.range(10)
expected_values = [[i] for i in range(10)]
input_fn = self._input_fn_to_test_input_context(
dataset_fn,
expected_num_replicas_in_sync=1,
expected_num_input_pipelines=1,
expected_input_pipeline_id=0)
self._test_input_fn_iterable(distribution, input_fn, expected_values)
def testMakeInputFnIteratorWithDataset(self, distribution):
dataset_fn = lambda: dataset_ops.Dataset.range(10)
expected_values = [[i] for i in range(10)]
input_fn = self._input_fn_to_test_input_context(
dataset_fn,
expected_num_replicas_in_sync=1,
expected_num_input_pipelines=1,
expected_input_pipeline_id=0)
iterator = distribution.make_input_fn_iterator(input_fn)
self._test_input_fn_iterator(
iterator, distribution.extended.worker_devices, expected_values)
def testMakeInputFnIteratorWithCallable(self, distribution):
def fn():
dataset = dataset_ops.Dataset.range(10)
it = dataset_ops.make_one_shot_iterator(dataset)
return it.get_next
expected_values = [[i] for i in range(10)]
input_fn = self._input_fn_to_test_input_context(
fn,
expected_num_replicas_in_sync=1,
expected_num_input_pipelines=1,
expected_input_pipeline_id=0)
iterator = distribution.make_input_fn_iterator(input_fn)
self._test_input_fn_iterator(
iterator, distribution.extended.worker_devices, expected_values,
test_reinitialize=False, ignore_order=True)
def testNumpyDataset(self, distribution):
self._test_numpy_dataset(distribution)
def testRun(self, distribution):
self._test_run(distribution)
def testAllReduceSum(self, distribution):
self._test_all_reduce_sum(distribution)
def testAllReduceSumGradients(self, distribution):
self._test_all_reduce_sum_gradients(distribution)
def testAllReduceSumGradientTape(self, distribution):
self._test_all_reduce_sum_gradient_tape(distribution)
def testAllReduceMean(self, distribution):
self._test_all_reduce_mean(distribution)
def testAllReduceMeanGradients(self, distribution):
self._test_all_reduce_mean_gradients(distribution)
def testAllReduceMeanGradientTape(self, distribution):
self._test_all_reduce_mean_gradient_tape(distribution)
def testTrainableVariables(self, distribution):
self._test_trainable_variable(distribution)
@combinations.generate(
combinations.combine(
distribution=[
strategy_combinations.one_device_strategy_on_worker_1,
strategy_combinations.one_device_strategy_gpu_on_worker_1
],
mode=["eager", "graph"]))
class OneDeviceStrategyOnRemoteWorkerTest(
strategy_test_lib.DistributionTestBase,
strategy_test_lib.OneDeviceDistributionTestBase):
def testDeviceAndInputDeviceAreColocated(self, distribution):
self._test_device_and_input_device_are_colocated(distribution)
def testDeviceAndInputDeviceAreColocatedWithFunction(self, distribution):
self._test_device_and_input_device_are_colocated_with_function(distribution)
if __name__ == "__main__":
test.main()