STT-tensorflow/tensorflow/python/debug/cli/evaluator_test.py
Shanqing Cai 44113ce5bb tfdbg CLI: add eval of arbitrary Python / np expressions
RELNOTES: TensorFlow Debugger (tfdbg) command-line interface: Support evaluation of arbitrary Python and numpy (np) expressions with debug tensor names enclosed in pairs of backtics. E.g., tfdbg> eval 'np.sum(`Softmax:0`, axis=1)'.
PiperOrigin-RevId: 164217384
2017-08-03 19:41:46 -07:00

269 lines
11 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for arbitrary expression evaluator."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.debug.cli import evaluator
from tensorflow.python.debug.lib import debug_data
from tensorflow.python.framework import test_util
from tensorflow.python.platform import test
class ParseDebugTensorNameTest(test_util.TensorFlowTestCase):
def testParseNamesWithoutPrefixOrSuffix(self):
device_name, node_name, output_slot, debug_op, exec_index = (
evaluator._parse_debug_tensor_name("foo:1"))
self.assertIsNone(device_name)
self.assertEqual("foo", node_name)
self.assertEqual(1, output_slot)
self.assertEqual("DebugIdentity", debug_op)
self.assertEqual(0, exec_index)
device_name, node_name, output_slot, debug_op, exec_index = (
evaluator._parse_debug_tensor_name("hidden_0/Weights:0"))
self.assertIsNone(device_name)
self.assertEqual("hidden_0/Weights", node_name)
self.assertEqual(0, output_slot)
self.assertEqual("DebugIdentity", debug_op)
self.assertEqual(0, exec_index)
def testParseNamesWithoutPrefixWithDebugOpSuffix(self):
device_name, node_name, output_slot, debug_op, exec_index = (
evaluator._parse_debug_tensor_name("foo:1:DebugNanCount"))
self.assertIsNone(device_name)
self.assertEqual("foo", node_name)
self.assertEqual(1, output_slot)
self.assertEqual("DebugNanCount", debug_op)
self.assertEqual(0, exec_index)
device_name, node_name, output_slot, debug_op, exec_index = (
evaluator._parse_debug_tensor_name(
"hidden_0/Weights:0:DebugNumericSummary"))
self.assertIsNone(device_name)
self.assertEqual("hidden_0/Weights", node_name)
self.assertEqual(0, output_slot)
self.assertEqual("DebugNumericSummary", debug_op)
self.assertEqual(0, exec_index)
def testParseNamesWithDeviceNamePrefixWithoutDebugOpSuffix(self):
device_name, node_name, output_slot, debug_op, exec_index = (
evaluator._parse_debug_tensor_name(
"/job:ps/replica:0/task:2/cpu:0:foo:1"))
self.assertEqual("/job:ps/replica:0/task:2/cpu:0", device_name)
self.assertEqual("foo", node_name)
self.assertEqual(1, output_slot)
self.assertEqual("DebugIdentity", debug_op)
self.assertEqual(0, exec_index)
device_name, node_name, output_slot, debug_op, exec_index = (
evaluator._parse_debug_tensor_name(
"/job:worker/replica:0/task:3/gpu:0:hidden_0/Weights:0"))
self.assertEqual("/job:worker/replica:0/task:3/gpu:0", device_name)
self.assertEqual("hidden_0/Weights", node_name)
self.assertEqual(0, output_slot)
self.assertEqual("DebugIdentity", debug_op)
self.assertEqual(0, exec_index)
def testParseNamesWithDeviceNamePrefixWithDebugOpSuffix(self):
device_name, node_name, output_slot, debug_op, exec_index = (
evaluator._parse_debug_tensor_name(
"/job:ps/replica:0/task:2/cpu:0:foo:1:DebugNanCount"))
self.assertEqual("/job:ps/replica:0/task:2/cpu:0", device_name)
self.assertEqual("foo", node_name)
self.assertEqual(1, output_slot)
self.assertEqual("DebugNanCount", debug_op)
self.assertEqual(0, exec_index)
device_name, node_name, output_slot, debug_op, exec_index = (
evaluator._parse_debug_tensor_name(
"/job:worker/replica:0/task:3/gpu:0:"
"hidden_0/Weights:0:DebugNumericSummary"))
self.assertEqual("/job:worker/replica:0/task:3/gpu:0", device_name)
self.assertEqual("hidden_0/Weights", node_name)
self.assertEqual(0, output_slot)
self.assertEqual("DebugNumericSummary", debug_op)
self.assertEqual(0, exec_index)
def testParseMalformedDebugTensorName(self):
with self.assertRaisesRegexp(
ValueError,
r"The debug tensor name in the to-be-evaluated expression is "
r"malformed:"):
evaluator._parse_debug_tensor_name(
"/job:ps/replica:0/task:2/cpu:0:foo:1:DebugNanCount:1337")
with self.assertRaisesRegexp(
ValueError,
r"The debug tensor name in the to-be-evaluated expression is "
r"malformed:"):
evaluator._parse_debug_tensor_name(
"/job:ps/replica:0/cpu:0:foo:1:DebugNanCount")
with self.assertRaises(ValueError):
evaluator._parse_debug_tensor_name(
"foo:1:DebugNanCount[]")
with self.assertRaises(ValueError):
evaluator._parse_debug_tensor_name(
"foo:1[DebugNanCount]")
def testParseNamesWithExecIndex(self):
device_name, node_name, output_slot, debug_op, exec_index = (
evaluator._parse_debug_tensor_name("foo:1[20]"))
self.assertIsNone(device_name)
self.assertEqual("foo", node_name)
self.assertEqual(1, output_slot)
self.assertEqual("DebugIdentity", debug_op)
self.assertEqual(20, exec_index)
device_name, node_name, output_slot, debug_op, exec_index = (
evaluator._parse_debug_tensor_name("hidden_0/Weights:0[3]"))
self.assertIsNone(device_name)
self.assertEqual("hidden_0/Weights", node_name)
self.assertEqual(0, output_slot)
self.assertEqual("DebugIdentity", debug_op)
self.assertEqual(3, exec_index)
class EvaluatorTest(test_util.TensorFlowTestCase):
def testEvaluateSingleTensor(self):
dump = test.mock.MagicMock()
def fake_get_tensors(node_name, output_slot, debug_op, device_name=None):
del node_name, output_slot, debug_op, device_name # Unused.
return [np.array([[1.0, 2.0, 3.0]])]
with test.mock.patch.object(
dump, "get_tensors", side_effect=fake_get_tensors, autospec=True):
ev = evaluator.ExpressionEvaluator(dump)
self.assertEqual(3, ev.evaluate("np.size(`a:0`)"))
# Whitespace in backticks should be tolerated.
self.assertEqual(3, ev.evaluate("np.size(` a:0 `)"))
def testEvaluateTwoTensors(self):
dump = test.mock.MagicMock()
def fake_get_tensors(node_name, output_slot, debug_op, device_name=None):
del debug_op, device_name # Unused.
if node_name == "a" and output_slot == 0:
return [np.array([[1.0, -2.0], [0.0, 1.0]])]
elif node_name == "b" and output_slot == 0:
return [np.array([[-1.0], [1.0]])]
with test.mock.patch.object(
dump, "get_tensors", side_effect=fake_get_tensors, autospec=True):
ev = evaluator.ExpressionEvaluator(dump)
self.assertAllClose([[-3.0], [1.0]],
ev.evaluate("np.matmul(`a:0`, `b:0`)"))
self.assertAllClose(
[[-4.0], [2.0]], ev.evaluate("np.matmul(`a:0`, `b:0`) + `b:0`"))
def testEvaluateNoneExistentTensorGeneratesError(self):
dump = test.mock.MagicMock()
def fake_get_tensors(node_name, output_slot, debug_op, device_name=None):
del node_name, output_slot, debug_op, device_name # Unused.
raise debug_data.WatchKeyDoesNotExistInDebugDumpDirError()
with test.mock.patch.object(
dump, "get_tensors", side_effect=fake_get_tensors, autospec=True):
ev = evaluator.ExpressionEvaluator(dump)
with self.assertRaisesRegexp(
ValueError, "Eval failed due to the value of .* being unavailable"):
ev.evaluate("np.matmul(`a:0`, `b:0`)")
def testEvaluateWithMultipleDevicesContainingTheSameTensorName(self):
dump = test.mock.MagicMock()
def fake_get_tensors(node_name, output_slot, debug_op, device_name=None):
del output_slot, debug_op # Unused.
if node_name == "a" and device_name is None:
raise ValueError(
"There are multiple (2) devices with nodes named 'a' but "
"device_name is not specified")
elif (node_name == "a" and
device_name == "/job:worker/replica:0/task:0/cpu:0"):
return [np.array(10.0)]
elif (node_name == "a" and
device_name == "/job:worker/replica:0/task:1/cpu:0"):
return [np.array(20.0)]
with test.mock.patch.object(
dump, "get_tensors", side_effect=fake_get_tensors, autospec=True):
ev = evaluator.ExpressionEvaluator(dump)
with self.assertRaisesRegexp(ValueError, r"multiple \(2\) devices"):
ev.evaluate("`a:0` + `a:0`")
self.assertAllClose(
30.0,
ev.evaluate("`/job:worker/replica:0/task:0/cpu:0:a:0` + "
"`/job:worker/replica:0/task:1/cpu:0:a:0`"))
def testEvaluateWithNonDefaultDebugOp(self):
dump = test.mock.MagicMock()
def fake_get_tensors(node_name, output_slot, debug_op, device_name=None):
del device_name # Unused.
if node_name == "a" and output_slot == 0 and debug_op == "DebugIdentity":
return [np.array([[-1.0], [1.0]])]
elif node_name == "a" and output_slot == 0 and debug_op == "DebugFoo":
return [np.array([[-2.0, 2.0]])]
with test.mock.patch.object(
dump, "get_tensors", side_effect=fake_get_tensors, autospec=True):
ev = evaluator.ExpressionEvaluator(dump)
self.assertAllClose(
[[4.0]],
ev.evaluate("np.matmul(`a:0:DebugFoo`, `a:0:DebugIdentity`)"))
def testEvaluateWithMultipleExecIndexes(self):
dump = test.mock.MagicMock()
def fake_get_tensors(node_name, output_slot, debug_op, device_name=None):
del debug_op, device_name # Unused.
if node_name == "a" and output_slot == 0:
return [np.array([[-1.0], [1.0]]), np.array([[-2.0], [2.0]])]
with test.mock.patch.object(
dump, "get_tensors", side_effect=fake_get_tensors, autospec=True):
ev = evaluator.ExpressionEvaluator(dump)
self.assertAllClose(
[[4.0]], ev.evaluate("np.matmul(`a:0[1]`.T, `a:0[0]`)"))
def testEvaluateExpressionWithUnmatchedBacktick(self):
dump = test.mock.MagicMock()
ev = evaluator.ExpressionEvaluator(dump)
with self.assertRaises(SyntaxError):
ev.evaluate("np.matmul(`a:0`, `b:0`) + `b:0")
def testEvaluateExpressionWithInvalidDebugTensorName(self):
dump = test.mock.MagicMock()
ev = evaluator.ExpressionEvaluator(dump)
with self.assertRaisesRegexp(
ValueError, r".* tensor name .* expression .* malformed"):
ev.evaluate("np.matmul(`a`, `b`)")
with self.assertRaisesRegexp(
ValueError, r".* tensor name .* expression .* malformed"):
ev.evaluate("np.matmul(`a:0:DebugIdentity:0`, `b:1:DebugNanCount:2`)")
with self.assertRaises(ValueError):
ev.evaluate("np.matmul(`a:0[]`, `b:0[]`)")
if __name__ == "__main__":
test.main()